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Abstract When a temperature difference is applied over a porous medium soaked with a fluid mixture, two
effects may be observed, a component separation (the Ludwig–Soret effect, thermodiffusion) and a pressure
difference due to thermo-osmosis. In this work, we have studied both effects using non-equilibrium thermo-
dynamics and molecular dynamics. We have derived expressions for the two characteristic parameters, the
Soret coefficient and the thermo-osmotic coefficient in terms of phenomenological transport coefficients, and
we show how they are related. Numerical values for these coefficients were obtained for a two-component
fluid in a solid matrix where both fluid and solid are Lennard–Jones/spline particles. We found that both
effects depend strongly on the porosity of the medium and weakly on the interactions between the fluid
components and the matrix. The Soret coefficient depends strongly on whether the fluid is sampled from
inside the porous medium or from bulk phases outside, which must be considered in experimental measure-
ments using packed columns. If we use a methane/decane mixture in bulk as an example, our results for
the Soret coefficient give that a temperature difference of 10 K will separate the mixture to about 49.5/50.5
and give no pressure difference. In a reservoir with 30% porosity, the separation will be 49.8/50.2, whereas
the pressure difference will be about 15 bar. Thermo-osmotic pressures with this order or magnitude have
been observed in frost-heave experiments.

1 Introduction

Thermodiffusion, the Ludwig–Soret effect, is the pro-
cess by which a temperature gradient in a fluid or solid
drives mass diffusion in a binary or multicomponent
mixture. The effect bears the name of the scientists
who discovered it, Carl Ludwig in 1865 and Charles
Soret in 1879 [1,2]. Research on thermodiffusion gained
momentum with the Manhattan project, where Clusius-
Dickel columns [3] were used to enrich uranium. Over
more than 50 years, the effect has been extensively
studied both experimentally and by computer simula-
tions; a good review was given by Köhler and Moro-
zov [4]. Many models have been developed to describe
and explain the effect, based on kinetic theory [5], equi-
librium and non-equilibrium thermodynamics [6], and
computer simulations [7,8], but a complete theory is
not yet available, not even for bulk fluids.

Thermodiffusion in porous media is both challenging
and interesting. Challenging, because the presence of a
solid matrix adds complexity compared with bulk fluids
due to the irregular pore structure and the fluid–matrix
interactions [9,10]. Interesting, because it concerns so
many systems of natural and industrial importance. It
has been speculated that thermodiffusion in hot sub-
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sea water plumes has played a role in the origin of life
on Earth [11]. Three examples of thermodiffusion in
porous media are: frost heave which damages roads at
spring time [12], diffusive transport of reactants and
products in heterogeneous catalysis [13], and formation
and growth of salt lenses (columnar crystals) in the
carbon cathode during aluminum electrolysis [14,15].
Much attention has been given to the initial states of
oil and gas reservoirs where the assessment of the com-
position of the hydrocarbon column may be seriously
off if thermodiffusion is neglected [16–18]. Gravity seg-
regation makes the heavier components in the hydro-
carbon mixture migrate to the bottom of the reservoir,
but Montel and coworkers [17] showed that thermodif-
fusion can counteract the segregation. The geothermal
gradient makes the reservoir hot at the bottom, such
that thermodiffusion may drive the lighter components
to the bottom.

Classic experimental techniques for measuring the
Soret effect involve porous media. Packed columns were
from the early 1970s a dominant experimental appara-
tus for measuring Soret coefficients (see Ref. [9] and
references therein). Moreover, packed columns resem-
ble natural porous media, such as oil and gas reservoirs,
and can therefore help understand why porous media
behave differently from bulk fluids with respect to ther-
modiffusion. Costesèque and coworkers raised the ques-
tion in publications from 2004 of whether the Soret
coefficient is the same in a bulk fluid as in a porous
medium [19,20]. They used packed columns to mea-
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sure the Soret coefficient and wanted to know if the
porosity and tortuosity of the porous medium affected
the measurements. They concluded that although the
dynamics of mass separation was different, the mea-
sured coefficient in an aqueous copper sulfate solution
was the same at steady state. In another study from
2010, Davarzani and coworkers showed the same for
gas separation in porous media down to a porosity of
about 28%. There were large effects on the separate
diffusion and thermodiffusion coefficients, but no effect
on the ratio between them, the thermodiffusion factor
[21]. The effect of porosity was studied by Colombani
and coworkers [22] using molecular dynamics simula-
tions with a binary fluid mixture in a porous matrix.
They did indeed show a small but significant effect of
porosity down to about 70% porosity.

Extraction of data for the Soret effect from experi-
ments involves coupled transport equations which are
more complex than for bulk fluids. For instance, in a
stagnant bulk fluid subject to a temperature gradient,
the pressure equalizes in the system (neglecting grav-
ity) due to the low resistance to fluid flow, but in a
porous medium it does not [23]. A temperature gra-
dient may drive an osmotic process, thermo-osmosis,
which is typically found in membranes with a temper-
ature difference over the membrane. Some papers on
the Soret effect in porous media discuss this question
indirectly or in part. Davarzani et al. used a volume-
averaging technique to relate “effective” transport coef-
ficients to the corresponding coefficient in a bulk fluid
[24]. They found that in the diffusive regime, which is
the regime of interest here, the effective Soret coefficient
is equal to the bulk-fluid value. On the other hand, Fais-
sat et al. used irreversible thermodynamics to derive a
balance equation at stationary state (zero mass fluxes)
which includes temperature- and composition gradients
as well as gravity as driving forces [25]. They pointed
out that “... the presence of a capillary plays an impor-
tant role in the phenomenon, so that the characteris-
tics of the porous medium must be taken into account
in the description of real thermodiffusion.” Haugen and
Firoozabadi [26] introduced a “pressure diffusion coeffi-
cient” in the mass flux, which multiplied with a pressure
gradient, contributes along with Fickian and thermod-
iffusion to the total diffusive mass flux.

The effects of porosity were studied by Colombani
et al. using a Lennard–Jones model for an equimo-
lar methane-decane mixture with fixed “obstacles” and
with interactions between the fluid and the obstacles
[22]. They found that the Soret coefficient was lowered
by about 30% at 75% porosity (compared with the bulk
fluid) and that the reduction depended strongly on the
structure of the porous medium. A pressure gradient
was not a parameter in this study, probably because
the porosity was not low enough to quantify the effect
of thermo-osmosis, and gravity was not included.

To our knowledge, a study of a possible coupling
between thermodiffusion and thermo-osmosis in a
medium with two components and low porosity has not
been made. The question is how the osmotic pressure
affects the component separation. The effect of grav-

ity, which gives a hydrostatic pressure gradient, was
studied by Galliero and Montel [27], but because grav-
ity acts directly on the masses of the fluid molecules,
whereas thermo-osmosis does not, the hydrostatic pres-
sure and the osmotic pressure have different relations
to the Soret effect. It must therefore be expected that
the origin of a pressure gradient, whether it is gravity
or a temperature difference, will have different impacts
on component separation and the Soret effect.

The purpose of the present work is to find what effect
the porous medium has on the Soret coefficient and the
coupling between thermodiffusion and thermo-osmosis.
For this purpose, we have used non-equilibrium molec-
ular dynamics to simulate a porous medium soaked
with a two-component fluid mixture. This is a three-
component system, but the porous matrix is frozen in
the sense that matrix particles do not move. The fluid
is an isotope mixture, a simple and common reference
case, which has been well studied by computer simula-
tions [7,8]. When we now take this system to porous
media, we will be able to separate between well-known
trends reported in the literature, and properties partic-
ular of porous media. We find, for instance, the usual
situation that the heavy particles migrate to the cold
region. This simple mixture will also allow us to demon-
strate the other characteristic property of the porous
medium, the thermo-osmotic coefficient.

Our background and motivation for this work comes
from studies of the Soret effect, which gives some
emphasis on thermodiffusion. Important pioneering
work on the other part of this work, thermo-osmosis,
was done by Denbigh and Raumann [28,29].

The theory presented in Sect. 2 starts with a sum-
mary of elements from nonequilibrium thermodynam-
ics, viz. the entropy production due to the transport
processes and the flux–force relations. This part builds
on, and extends, work by Katchalsky and Curran [30],
Førland et al. [31], and others. The results are gen-
eral equations that relate the Soret and thermo-osmotic
coefficients to the conductivities defined by the flux–
force relations. The model system is introduced in
Sect. 3, where the molecular dynamics simulations are
described. We have used two system configurations,
one with a completely space-filling porous medium, and
the other with bulk fluid on both sides of the porous
medium. Results for the Soret and thermo-osmotic
effects are presented in Sect. 4 and discussed in Sect. 5.
In particular, we discuss how these effects depend on
the porosity of the medium and on the difference in
wettability of the two fluid components.

2 Coupled heat an mass transport in a
porous medium

The entropy production for coupled heat- and mass
transport in a two-component fluid in a porous medium
without any other external forces than a temperature
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gradient may be expressed as:

σ = J ′
q∇

(
1
T

)
−

2∑
k=1

Jk
1
T

∇μk,T (1)

where J ′
q is the measurable heat flux, Jk is the molar

flux of component k, T is the temperature, and μk,T

is the sum of the pressure- and compositional contribu-
tions to the chemical potential (excluding the thermal).
Components 1 and 2 are the miscible fluid components.
The porous matrix is the third component, and in Eq.
(1), we have chosen it as a stationary frame of reference,
i.e. J3 ≡ 0, and therefore not included it in the entropy
production. On this basis, the corresponding flux–force
relations are expressed as:

J ′
q =Lqq∇

(
1
T

)
−

2∑
k=1

Lqk
1
T

∇μk,T (2)

Jj =Ljq∇
(

1
T

)
−

2∑
k=1

Ljk
1
T

∇μk,T , j = 1, 2

(3)

where the phenomenological coefficients are subject to
the Onsager symmetry relations, Lij = Lji. Note that
even if component 3 is stagnant, it may contribute to
the thermal conductivity, Lqq. However, in the present
study, the matrix particles will be fixed to their lattice
positions and represent a perfect thermal insulator.

We now expand ∇μk,T into its contribution from
pressure and composition:

∇μk,T = Vk∇P + ∇μk,c (4)

where Vk is the partial molar volume of component k.
The Gibbs–Duhem equation states that

3∑
k=1

nk(∇μk + Sk∇T − Vk∇P ) =
3∑

k=1

nk∇μk,c = 0

(5)

where nk is the mole number and Sk is the partial molar
entropy of component k. The structure of component 3
is a FCC lattice, and the concentration of matrix parti-
cles does not vary in space. Moreover, the mole fraction
x3 is about one order of magnitude smaller than x1 and
x2. We therefore neglect the contribution ∇μ3,c in Eq.
(5) and solve for ∇μ2,c:

∇μ2,c = −n1

n2
∇μ1,c (6)

Introduction of Eqs. (4) and (6) into Eq. (1) gives an
alternative expression for the entropy production:

σ = J ′
q∇

(
1
T

)
− 1

T
JV ∇P − x1

T
JD∇μ1,c (7)

where the mole fraction of component i in the fluid is
xi = ni/(n1 + n2),

JV = J1V1 + J2V2 (8)

is a volume flux and

JD =
J1

x1
− J2

x2
(9)

is a diffusion flux. The fluxes may now be expressed as:

J ′
q =Lqq∇

(
1
T

)
− LqV

1
T

∇P − LqD
x1

T
∇μ1,c (10)

JV =LV q∇
(

1
T

)
− LV V

1
T

∇P − LV D
x1

T
∇μ1,c

(11)

JD =LDq∇
(

1
T

)
− LDV

1
T

∇P − LDD
x1

T
∇μ1,c

(12)

The diagonal elements of the flux–force relations rep-
resent Fourier’s law, Darcy’s law, and Fick’s law. The
relations between the L-coefficients in Eqs. (10)–(12)
and Eqs. (2)–(3) is given in “Appendix A”.

The thermal force is expressed by ∇ (1/T ) = −∇
T/T 2. For the present purpose, we set J1 = J2 = 0
and consequently JV = JD = 0, and find conditional
relations between the thermodynamic forces, which lead
to the following definition of the Soret coefficient:

S =
( ∇x1

x1x2∇T

)
JV =JD=0

(13)

=
1

x1x2RT 2

(
LDV LV q − LV V LDq

LDDLV V − L2
DV

) (
1+

∂ ln γ1

∂ ln x1

)−1

(14)

where γ1 is the activity coefficient of component 1.
The two-component isotope mixture we consider in this
work is an ideal mixture in bulk fluid with γ1 = 1. Equa-
tion (13) will give the sign of the Soret coefficient such
that the lighter component 1 in this case migrates to
the hot side of the system (the isotope effect). In the
porous medium, however, the matrix will make the fluid
mixture non-ideal if the two fluid components interact
differently with the matrix.

Likewise, the thermo-osmotic coefficient is defined as:

DP =
(∇P

∇T

)
JV =JD=0

(15)

= − 1
T

(
LDDLV q − LDV LDq

LDDLV V − L2
DV

)
(16)

If we use Eqs. (11) and (12) to express the forces ∇P
and ∇μ1,c in terms of the fluxes JV and JD and use the
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results in the heat flux, Eq. (10), we get

J ′
q = Lqq∇

(
1
T

)
+ q∗

V JV + q∗
DJD (17)

where the heats of transfer are

q∗
V =

LqV LDD − LqDLDV

LV V LDD − L2
DV

(18)

q∗
D =

LqDLV V − LqV LDV

LV V LDD − L2
DV

(19)

Note that q∗
V and q∗

D have different dimensions, see
“Appendix B”. The Soret coefficient and the thermo-
osmotic coefficient are related to q∗

D and q∗
V by

S = − q∗
D

x1x2RT 2

(
1 +

∂ ln γ1

∂ ln x1

)−1

(20)

DP = − q∗
V

T
(21)

The Soret coefficient can now be interpreted as the
heat of transfer conjugate to the diffusion flux and the
thermo-osmotic coefficient as the heat of transfer con-
jugate to the volume flux.

If we express the heat flux in Eq. (2) with heats of
transfer and mass fluxes, q∗

1 and q∗
2 , we get

J ′
q = Lqq∇

(
1
T

)
+ q∗

1J1 + q∗
2J2 (22)

with the following relations:

q∗
V =

q∗
1x1 + q∗

2x2

V1x1 + V2x2
(23)

q∗
D =x1x2

q∗
1V2 − q∗

2V1

V1x1 + V2x2
(24)

or

q∗
1 =

q∗
D

x1
+ q∗

V V1 = −x2RT 2

(
1 +

∂ ln γ1

∂ ln x1

)
S − V1TDP

(25)

q∗
2 = − q∗

D

x2
+ q∗

V V2 = x1RT 2

(
1 +

∂ ln γ1

∂ ln x1

)
S − V2TDP

(26)

To further illustrate the meanings of q∗
V and q∗

D,
we set the two fluid component parameters equal, so
that the system becomes a quasi-one-component system
with specie labels being the only difference. In this case,
which will be referred to as the “color case”, q∗

1 = q∗
2 ,

V1 = V2, and S = 0. Equations (23), and (24) then
reduce to

q∗
V =

q∗
1

V1
=

q∗
2

V2
(27)

q∗
D = x1x2(q∗

1 − q∗
2) = 0 (28)

which means that there is a thermo-osmotic effect, but
no separation of components.

The thermo-osmotic effect requires computation of
the pressure, which is not well defined in a porous
medium. We have therefore used a matrix configura-
tion with bulk fluid at both sides, see Fig. 1a, and com-
puted the pressure only in the bulk regions with the
standard virial method. The Soret and thermo-osmotic
coefficients in Eqs. (13) and (15) were modified to

S′ =
(

1
x1x2

Δx1

ΔT

)
JV =JD=0

(29)

and

D′
P =

(
ΔP

ΔT

)
JV =JD=0

(30)

respectively, where “Δ” means the property value in
the hot region minus that in the cold region. The com-
putation of pressure in the bulk fluid is straightforward.
However, the interface between the bulk and the matrix
may create a surface which adds resistance to the heat
flow and may also give an extra contribution to the
Soret effect, i.e. the coupling. A surface resistance to
heat flow will show up as a discontinuity in the tem-
perature profile. To resolve this issue, we also used a
porous medium that filled the whole system as shown in
Fig. 1b. A difference in the temperature profiles for two
otherwise identical cases will indicate a surface resis-
tance.

3 Nonequilibrium molecular dynamics
simulations

The fluid and matrix particles were modelled with a
Lennard–Jones spline potential, defined by Eq. (31)

uij(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ for r ≤ Σij

4εij

[(
σij−Σij

r−Σij

)12

−
(

σij−Σij

r−Σij

)6
]

for Σij ≤ r ≤ rs,ij

aij(r − rc,ij)2 + bij(r − rc,ij)3 for rs,ij ≤ r ≤ rc,ij

0 for r ≥ rc,ij

(31)
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Fig. 1 The two configurations of the porous medium used
in this work. This illustration shows two cases with φ ≈ 0.69
and ε∗

13 = ε∗
23 = 1.0, Series A (a) and B (b). The box bound-

aries are shown with the black line. Parts of the periodic
images of the mother box are also shown. In a each half of

the MD box is about 60% filled with the porous material
and 40% with bulk fluid. In b the matrix fills the MD box
completely. The bulk regions in a are thermostated to hot
and cold. The fluid in the corresponding regions in b are
thermostated likewise

Fig. 2 Matrix particle (grey) showing the hard-core diam-
eter Σ and the Lennard–Jones skin of thickness σ/2. The
two fluid components (red and blue) are of equal size with
diameter σ

The subscripts ij represent the combination of the
three components, in this case the six combinations
of two fluid components and one matrix component.
The parameter Σij = (Σi + Σj)/2 was introduced to
give the matrix particles a hard core, in the present
case Σi = 0 for the fluid particles (i = 1, 2) and
Σ3 = Σ > 0 where Σ is the core diameter of the matrix
particles. This is illustrated in Fig. 2. The “skin thick-
ness” parameters (σij − Σij) were all fixed to the same
value, σ, in the study reported here. We have used the
Lorentz–Berthelot mixing rules for the particle diame-
ters, σij = (σi + σj)/2. The absorption of the fluid in
the matrix (wettability) was controlled with the param-
eters ε13 and ε23. A “neutral” case was made by setting
all εij = 1.0.

The parameters aij , bij , rs,ij , and rc,ij in the
Lennard–Jones/spline potential are determined so as
to truncate the potential smoothly from the inflection
point of the full Lennard–Jones potential to zero. The
parameters are given by the algebraic equations

rs,ij =
(

26
7

)1/6

(σij − Σij) + Σij =
(

26
7

)1/6

σ + Σij

(32)

rc,ij =
67
48

rs,ij − 19
48

Rij (33)

aij = − 24192
3211

εij

(rs,ij − Σij)2
(34)

bij = − 387072
61009

εij

(rs,ij − Σij)3
(35)

The mass ratio of the fluid particles was 10 to 1.
The other parameters were σ11 = σ22 = σ12 = σ and
ε11 = ε22 = ε12 = ε; in other words, this is an isotope
mixture. The overall fluid mole fraction was 0.5.

We used a tetragonal MD box with Ly = Lz = Lx/8.
Two configurations were used as shown in Fig. 1 with
the total number of particles N = N1 + N2 + N3 =
16, 384. We confirmed that this number was large
enough to avoid size effects in the results. The num-
ber of matrix particles was N3 = 160 in Series A shown
in Fig. 1 and N3 = 256 in Series B. The two-component
fluid mixture was equimolar with N1 = N2 = 8114 in
Series A and N1 = N2 = 8064 in Series B. We denote
the mole fraction of matrix particles by x3 = N3/N and
the volume fraction of the porous medium by y = Vm/V
where V is the total volume of the MD box and Vm

is the volume of the porous medium. In this work,
y = 0.625 and 1.0 for Series A and B, respectively. The
porosity of the porous medium is the ratio between the
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pore volume Vp and Vm:

φ =
Vp

Vm
= 1 − N3b

Vm
= 1 − x

y
ρb (36)

where ρ = N/V is the overall particle density in the
system (including the matrix particles) and b is the vol-
ume of a single matrix particle. The particle volume is
not well defined for a soft particle like a Lennard–Jones
particle, but we have used b = πσ3

33/6.
The number of fluid particles in the matrix is

Nm
f = ρm

f Vp = ρm
f φVm = yρm

f φV (37)

where ρm
f is the fluid density in the porous medium.

The system’s porosity was controlled by the size of the
matrix particles.

The number of fluid particles in the bulk is

Nb
f = (1 − y)ρb

f V (38)

where ρb
f is the fluid density in the bulk.

The fluid densities were determined as follows. Equi-
librium simulations were performed for Series A at neu-
tral wettability, reduced temperature T ∗ = kT/ε11 =
3.0, and reduced fluid density in the bulk (ρb

f )
∗ =

ρb
f σ3

11 = 0.7. This is a typical liquid density. The corre-
sponding fluid density in the porous medium was moni-
tored, and the total number of fluid particles was deter-
mined from Eqs. (37) and (38) and confirmed against
the total number of particles in the system. This pro-
cedure was repeated for 8 different porosities with the
results shown in Table 1.

Series B was used with the same porosities and fluid
densities in the porous medium as in Series A. The dif-
ferent overall densities is due to the contribution from
the bulk in Series A, which is not relevant in Series B.

The system was divided in x-direction into 64 layers
of equal thickness. A temperature gradient was created
in Series A by thermostating the fluid particles in the
bulk (five layers) at each end of the MD box to a uni-
form high temperature T ∗

H = 4.0 and in the middle
(ten layers) to a uniform low temperature T ∗

L = 2.0 by
velocity scaling. Also in Series B, five layers at each end
and ten layers in the center of the MD box were used for
thermostating the fluid, but the thermostat was applied
to the fluid particles only. The average fluid tempera-
ture in the entire system was approximately equal to 3.0
(in reduced units), which is slightly higher than three
times the critical temperature for this fluid.

We were also interested in the effect of wettability
preferences; does a difference in wettability between
fluid and matrix have an effect on the Soret coeffi-
cient? This was studied by varying the energy param-
eters between the fluid and the matrix, ε13 and ε23,
such that the interaction between the lighter compo-
nent (component 1) and the matrix was stronger in
some cases and opposite in other cases. This is quanti-
fied by the difference ε23−ε13. The larger this difference

is, the more do the heavy particles wet the matrix par-
ticles. For each case, 11 different values of ε∗

23−ε∗
13 with

intervals 0.2 were used in the range between − 1.0 and
+ 1.0 (ε∗

i3 ≡ εi3/ε11, i = 1, 2).
A summary of the parameter values is given in

Table 2.
For each case, five parallel runs were made, each

starting from a FCC structure. The matrix particles
were frozen to their lattice positions. Prior to the MD
runs, the fluid particle positions were randomized with
different number of Monte Carlo steps. The number of
MD steps was 3×107 for each parallel run with the last
5×106 steps used for data acquisition. The mass fluxes
were monitored, which showed that the large number
of steps was necessary to reach steady state, especially
for lowest porosities.

A snapshot of the system in Case 5, Series A and
B, is shown in Fig. 1. The illustration shows a surplus
of heavy (blue) particles in the middle of the MD box
where the temperature is low and red (light) particles
at the ends where the temperature is high.

Data for temperature and composition were recorded
and analyzed according to Eqs. (13) and (29) for the
Soret coefficient and with Eq. (30) for the thermo-
osmotic coefficient. The difference, such as Δx1, is the
value in the hot region minus that in the cold region.
The configuration used in Series A introduces an inter-
face between bulk and matrix. The fluid density in the
matrix is lower than in the bulk and this change in den-
sity may give an additional resistance to the heat flux
(the Kapitza resistance). The matrix particles do not
conduct heat in our case. The change in fluid density
has no effect on the mass fluxes, which are zero at the
steady state we shall consider.

4 Results

4.1 The Soret coefficient

4.1.1 Porosity effects

A typical example of mole-fraction and temperature
profiles at steady state with J1 = J2 = 0 is shown in
Fig. 3. These results are for the cases shown in Fig. 1.
The five points at each end of the graphs represent
the thermostated layers in the MD box. These are the
regions with the bulk fluid in Series A. The temperature
profiles are linear in the matrix, and the mole-fraction
profile deviates slightly from linearity. The slope of
the temperature profile in Case B5 shifts abruptly
from zero to negative between the thermostated and
not-thermostated layers, whereas the profile in Case
A5 shows a slightly smoother transition between the
thermostated and non-thermostated regions. However,
there appears to be no Kapitza resistance in Series A,
which would have shown up as a discontinuity in the
temperature profiles across the surfaces.

Such data were used to compute S′ from Eq. (29)
with the results listed in Table 3. The data for Series A
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Table 1 Porosities and equilibrium densities at T ∗ = 3.0. The ρb
f refers to the bulk fluid density in Series A and ρm

f refers
to fluid density in the pores in both series. The density ρ is the average fluid density in the entire system

Case σ33/σ11 φ (ρb
f )

∗ (ρm
f )∗ ρ∗ (Series A) ρ∗ (Series B)

1 6.2 0.33 0.70 0.39 0.35 0.13
2 5.8 0.40 0.70 0.42 0.37 0.17
3 5.4 0.47 0.70 0.50 0.41 0.24
4 5.0 0.54 0.70 0.54 0.45 0.30
5 4.2 0.69 0.70 0.59 0.52 0.41
6 3.8 0.75 0.70 0.62 0.56 0.47
7 3.0 0.86 0.70 0.65 0.62 0.57
8 2.0 0.96 0.70 0.68 0.67 0.66

Table 2 Parameter values used in the MD simulations

Parameter Value Meaning

(ρb
f )

∗ 0.7 Fluid density in the bulk (case a)
T ∗
H 4.0 High thermostat set point

T ∗
L 2.0 Low thermostat set point

m2/m1 10.0 Fluid particle mass ratio
ε22/ε11 1.0 Potential depth ratio
σ22/σ11 1.0 Fluid particle diameter ratio
x1 0.5 Mole fraction of fluid component 1
φ 0.33 to 1.0 Matrix porosity
ε∗
23 − ε∗

13 − 1.0 to + 1.0 Wettability preference. Higher value means
heavy particles are more wetting.

σ33/σ11 2.0 to 6.2 Matrix particle size

Fig. 3 Profiles of mole fraction and temperature for Series
A and B, Case 5 (cf. Table 3). The abscissa is in units of MD
box length in x-direction. The errors, determined as three
standard errors based on data from five parallel runs, are
about the size of the symbols

and B show the same trend as function of porosity, but
they differ by more than the combined statistical errors
for φ < 0.7. We also determined S in the central part
of the matrix using Eq. (13). The ratio ∇x1/∇T was
determined from a plot of x1 versus T , and the ratio
was determined as the slope. Only the 14 middle layers
in the matrix were used in this analysis to avoid the
direct impact of the surfaces.

Fig. 4 Soret coefficients for the neutrally wetting case
(ε∗

23 − ε∗
13 = 0) as function of porosity. Series A (black) and

B (white) are for the systems shown in Fig. 1a and b, respec-
tively. The Soret coefficients were computed in two ways for
each series, the squares from Eq. (29) using the difference
between the thermostated regions. The circles from Eq. (13)
using the gradients in the central part of the matrix. The
uncertainties are three standard errors. The cross at φ = 1.0
shows the result for bulk a fluid (S∗ = 0.666 ± 0.005)

The results determined from Eqs. (13) and (29) for
Series A and B for ε∗

13 = ε∗
23 = 1.0 are shown in Fig. 4.

Whether we used the difference between the properties
in the thermostated regions or the gradients had lit-
tle effect on the values of the Soret coefficient in this
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Table 3 Values for Δx1 and S′∗ from Series A and B computed with Eq. (29). In all cases, ΔT ∗ = 2.0 and ε∗
23 − ε∗

13 = 0

Case φ Δx1 (Series A) S′∗ (Series A) Δx1 (Series B) S′∗ (Series B)

1 0.33 0.13 ± 0.01 0.26 ± 0.03 0.082 ± 0.01 0.16 ± 0.02
2 0.40 0.182 ± 0.01 0.36 ± 0.01 0.114 ± 0.003 0.23 ± 0.01
3 0.47 0.216 ± 0.008 0.43 ± 0.02 0.163 ± 0.01 0.33 ± 0.02
4 0.54 0.246 ± 0.007 0.49 ± 0.01 0.213 ± 0.01 0.43 ± 0.02
5 0.69 0.29 ± 0.01 0.58 ± 0.02 0.259 ± 0.01 0.52 ± 0.02
6 0.75 0.30 ± 0.01 0.60 ± 0.03 0.283 ± 0.008 0.57 ± 0.02
7 0.86 0.32 ± 0.02 0.63 ± 0.04 0.311 ± 0.004 0.62 ± 0.01
8 0.96 0.324 ± 0.003 0.65 ± 0.01 0.328 ± 0.006 0.66 ± 0.01

example, the results agreed within the combined statis-
tical errors. However, we did find a significant difference
between Series A and B as shown in Table 3 and Fig. 4.
This difference can only be explained by the difference
in the boundary conditions for the two series, as will be
further discussed in Sect. 5.

4.1.2 Wettability effects

The wettability preference was controlled by the param-
eters ε∗

13 and ε∗
23 such that the difference ε∗

23 − ε∗
13 was

varied in 11 steps between − 1 and + 1. Temperature-
and mole fraction profiles for two extreme cases, ε∗

23 −
ε∗
13 = −1 and +1 for Case 5, φ = 0.69, are shown in

Fig. 5. In Series A, with the bulk fluid reservoirs, the
absorption of the wetting component in the matrix led
to a deficit of the same component in the bulk com-
pared with the neutrally wetting case (Fig. 3). This
deficit was non-symmetric in the sense that it was larger
in the cold bulk phase than in the hot, indicating a
stronger absorption of the wetting component at the
lower temperature. The result was a large distortion of
the Soret coefficient as computed from Eq. (29). This
way of computing the Soret coefficient therefore gave a
dramatic effect of the wettability preference as shown
in Fig. 6a. When the lighter component 1 was more
wetting (ε∗

23 − ε∗
13 = −1), the deficit in the cold region

worked in the same direction as the isotope effect, lead-
ing to a larger apparent Soret coefficient than in the
neutral case. On the contrary, when the heavier com-
ponent 2 was more wetting (ε∗

23 − ε∗
13 = +1), the

absorption effect worked in the opposite direction, lead-
ing to a smaller apparent Soret coefficient than in the
neutral case. In the matrix, the mole-fraction profiles
showed approximately the same gradients, irrespective
of the wettability preference. When computed from Eq.
(13), using the temperature- and mole fraction data
for the central part of the matrix, the Soret coefficient
appeared to be less sensitive to the wettability prefer-
ence (see Fig. 6a). This was confirmed by data from
Series B, where we again used mole-fractions and tem-
peratures from the central part of the matrix and Eq.
(13). The profiles were found to be independent of the
wettability preference, and so was the Soret coefficient,
see Fig. 6b.

Results for the Soret coefficient as function of wet-
tability preference are given in Fig. 7. When S is com-

puted from the gradients of T and x1 in the porous
medium, using Eq. (13), the wettability preference has
little effect on the Soret coefficient, except for the low-
est porosities in Series A. The values are slightly smaller
for Series B than for A for the lower porosities, which
is also clear from Fig. 4. When S′ is computed from
the difference between the bulk fluid values in Series
A, however, there is a dramatic effect of the wettabil-
ity preference, especially for the lower porosities due
to the absorption effect discussed above. These results
have some serious implications on experimental designs
made to measure properties of porous media. We have
here demonstrated that the system layout is decisive for
the outcome of the result, and can lead to deviations as
pictured in Fig. 4.

4.2 Thermo-osmosis

The thermo-osmotic coefficient was determined from
Series A using Eq. (30). We found a pressure build-up
at the hot side of the porous medium, DP > 0. Selected
results are shown in Fig. 8. The thermo-osmotic coef-
ficient decreases significantly with increasing porosity
and tends to zero as the porosity tends to one, but
with an irregularity around φ = 0.4. We will show later
on that this irregularity correlates with an irregularity
in the absorption in the matrix. There is a clear, but
smaller dependency on the wettability preference. The
results from the color case agree well with the other
results. Since the composition is irrelevant for DP in
the color case, this means that DP depends weakly on
the composition.

The effect of the wettability preference is shown in
Fig. 9. We found a slight, but significant increase in
DP with increasing wettability of the heavy component.
The trends were the same for all porosities, but most
clear for the highest porosity.

4.3 Fluid absorption and composition in the porous
medium

Equilibrium simulations were made to clarify the effect
of wettability preference in the porous medium. Fig-
ure 10 shows the fluid density in the pore volume as
function of porosity. The density increases with increas-
ing porosity, which means that the fluid particles can
pack more densely for larger pore volumes. The effect
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Fig. 5 Profiles of mole fraction (circles, right axis) and
temperature (squares, left axis) for Series A (graph a) and
B (graph b) at φ = 0.69. The black and white symbols are
for ε∗

23 − ε∗
13 = −1.0 (lighter component more wetting) and

+1.0, respectively. If the plots overlap, only white symbols
are shown. The abscissa is in units of MD box length in

x-direction. The errors in both x1 and T ∗, based on data
from five parallel runs, are represented by the symbol size.
The insert in panel (a) shows details of the jump in mole-
fraction profiles between the matrix and bulk on the cold
side. The guidelines are linear fits to the data in the matrix
and the bulk

Fig. 6 Effect of wettability preference on the Soret coeffi-
cient for the equimolar mixture in Series A (a) and B (b).
The Soret coefficients in Series A were computed from Eqs.
(13) and (29) and are shown as circles and squares, respec-
tively. The Soret coefficients in Series B were computed from

Eq. (13) only. Black and white symbols are for ε∗
23−ε∗

13 = −1
and +1, respectively. The cross at φ = 1.0 is the result for
the bulk fluid. The errors bars are based on data from five
parallel runs with randomized initial configurations

Fig. 7 Soret coefficient as function of wettability preference. All panels show data for φ = 0.33, 0.47, 0.86. a is for Series
A with Eq. (13), b for Series B with Eq. (13), and c for Series A with Eq. (29). The errors bars are based on data from five
parallel runs
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Fig. 8 Thermo-osmotic coefficient as function of porosity
for three values of the wettability preference ε∗

23 − ε∗
13. The

red symbols show results for ε∗
23 = ε∗

13 and m2 = m1, i.e.
the “color” case with no Soret effect

Fig. 9 Thermo-osmotic coefficient as function of wettabil-
ity preference ε∗

23 − ε∗
13 for three porosities

of temperature is small, and there is no apparent effect
of the wettability preference. Note the wavy behavior
for φ < 0.5, which coincides with the dip in DP at the
same porosity.

Another aspect of the fluid distribution in the matrix
is the composition. Figure 11 shows two profiles of x1

for ε∗
23 − ε∗

13 = −1 and 0 at T ∗ = 3.
The mole fraction shown in the figure is based on the

two-component fluid with x1 + x2 = 1. In the porous
medium, this is not quite correct because the matrix
(component 3) must also be included. With 160 matrix
particles, the correction is small, Δx1 ≈ −160x1/N

m
f

where Nm
f is the number of fluid particles in the matrix,

which varies from 4000 to 10,000 for porosities vary-
ing from 30 to 100%. The mole fractions shown in
Fig. 12 were corrected in this way. In the neutral case
(ε∗

23 − ε∗
13 = 0), the fluid composition is approximately

the same, x1 = 0.5, in the porous medium as in the
bulk. When the lighter component 1 is more wetting
(ε∗

23 − ε∗
13 = −1), this component is enriched in the

porous medium and depleted in the bulk. When the
heavier component 2 is more wetting, the effect is oppo-
site. The difference in mass of the two components has
no effect on the component distribution in these equilib-

Fig. 10 Fluid density in the matrix as function of porosity
for three temperatures. The case “3, neutral” is for ε∗

23 −
ε∗
13 = 0, the others are for ε∗

23 − ε∗
13 = −1. The cross at

φ = 1.0,
(
ρf
m

)∗
= 0.7 marks the bulk value. Errors are shown

as symbol size

Fig. 11 Profiles of the mole fraction of component 1 in
equilibrium simulations at T ∗ = 3 and φ = 0.33 for two
wettability preferences. The two thick vertical lines on the x-
axis mark the limits of the porous medium (0.09 < x/Lx <
0.41). These mole fractions represent the fluid composition
only, not including the matrix particles. The error bars are
based on five runs with different initial configurations

Fig. 12 Corrected mole fraction of component 1 in the
porous medium as function of porosity for ε∗

23 − ε∗
13 = −1

(component 1 more wetting) for three temperatures. The
mole fraction has been corrected for the presence of matrix
particles, which means that x1 + x2 < 1.0
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rium cases and is a consequence of the porous medium
only.

All equilibrium data for the mole fraction are shown
in Fig. 12. At T ∗ = 4, which is the temperature at the
hot side used in the non-equilibrium simulations of S
and DP, component 1 is almost uniformly distributed.
On the cold side, at T ∗ = 2, component 1 is much more
abundant. This explains the step in x1 shown in Fig. 5
at the cold side, while the hot side does not show a
step. The consequence for the Soret coefficient is shown
in Fig. 6a. For all temperatures, we found an oscillatory
behavior of x1 superposed on a decaying backbone, with
a minimum around φ ≈ 0.4 and a weaker maximum
around φ ≈ 0.6, and possibly a weak minimum around
φ ≈ 0.8.

The activity coefficient of the two fluid components
in the porous medium was determined from system A as
follows. At equilibrium, the activity of each fluid com-
ponent, ai = xiγi, is the same in the bulk as in the
matrix, hence

γm
i =

xb
i

xm
i

γb
i (39)

where superscripts “b” and “m” mean “in bulk” and
“in matrix”, respectively. The activity coefficients in
the bulk phases are unity because the isotope mixture
is ideal. Results for γ1 and γ2 for ε∗

23 − ε∗
13 = −1 (com-

ponent 1 more wetting) are given in Table 4. Due to
the symmetry of the system, the values for γ1 are valid
for γ2 when ε∗

23 − ε∗
13 = +1, and the values for γ2 in

the table are valid for γ1 when ε∗
23 − ε∗

13 = +1. The
activity coefficients are all close to unity, except at the
lower porosities and temperature.

5 Discussion

Colombani et al. [22] found that the Soret coefficient
decreased with decreasing porosity down to φ = 0.75
(the lowest porosity they considered). Our results show
that this trend continues at lower porosities. At φ =
0.33, the Soret coefficient computed in Series A is about
one third of the bulk fluid value and from Series B
about one quarter. It is known that the Soret coef-
ficient depends on other molecular parameters, which
will certainly be the case also in porous media, but it is
clear that the porous medium itself has an effect on the
coefficient. Our results do therefore not support early
findings that the porous medium does not affect the
measured values [19–21].

We found that the two configurations of the Soret
cell shown in Fig. 1 give very different values of the
Soret coefficient. With bulk fluid on the sides of the
porous medium (System A), we got larger values than
in System B without such a bulk fluid (Fig. 4). This
shows that if a packed column has bulk fluid outside
the packing, it is important to specify how the sam-
pling is done. Both systems are closed, which means

that Series A, unlike Series B, has fluid reservoirs that
are open only to the porous medium. The fluid den-
sity, fluid–matrix interactions, and to some extent the
composition change across the bulk/matrix boundaries.
A mass flux will change not only the composition in
the porous medium, but also in the bulk. Therefore,
the capacity of the reservoir will influence the measure-
ments. We also found that the preferential absorption of
the two components had a dramatic effect on the Soret
coefficient in Series A, but not in Series B. This has two
important implications. (1) When the Soret coefficient
is measured with the packed column method and fluid
samples are drawn from outside the porous medium,
the values may be distorted by the wettability. (2) The
Soret effect may depend on variations in the wettability.

The values for the Soret coefficient shown in Figs. 4
and 6 can be converted to SI units by using a
methane/decane mixture as an example. The conver-
sion from reduced Lennard–Jones units to SI units is
given in “Appendix B”. Although we consider only
the mass difference and neglect the large difference in
molecular size, the example may still serve as a rough
guide. We choose the lighter component, methane, as
component 1, with σ11 = 3.5 × 10−10 m and ε11/kB =
150 K. A value in bulk fluid, S∗ = 0.67 gives S =
4.5 × 10−3 K−1, which is the same order of magnitude
as found in previous studies [32]. At 30% porosity, this
value is reduced to about 1.3 × 10−3 K−1. A mixture
with x1 = 0.5 will at 30% porosity show a separation to
x1 ≈ 0.502 at the hot side and x1 ≈ 0.498 at the cold
side for a temperature difference ΔT = 10 K.

The main reason why System A was used, was the
wish to investigate the thermo-osmotic coefficient. The
definition and computation of pressure in a porous
medium are topics of discussion [33,34], so we have used
the classic virial route to get the pressure in the bulk
fluid only. Moreover, the thermo-osmotic pressure is,
like the normal osmotic pressure, measured as a pres-
sure difference over a membrane, not in the membrane
itself.

It is known that the thermo-osmotic coefficient can
be both positive and negative [23]. We found a posi-
tive coefficient, i.e. the thermo-osmotic flux direction is
from cold to hot. The DP is directly related to the heat
of transfer q∗

V by Eq. (21), so it must be related to dif-
ferences in the enthalpy across the porous medium. The
difference in molar enthalpy at the hot side minus that
at the cold side is positive in the system we have stud-
ied, but we also have to consider the change in enthalpy
across the interfaces between bulk and porous medium.
Additional studies are necessary to elaborate this point.
In bulk fluid, the pressure is uniform (DP = 0), but in
a porous medium or a membrane, the pressure differ-
ence can be quite high. The highest value we found,
D∗

P ≈ 0.5 at 30% porosity, corresponds to 1.5 × 105

Pa/K in SI units for a two-component mixture like
methane/decane. This is the same order of magnitude
as has been measured in laboratory experiments of frost
heave [35].
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Table 4 Activity coefficients for components 1 and 2 in the porous medium for ε∗
23 − ε∗

13 = −1. The uncertainties are ±2
in the last digit

Porosity γ1 γ2

T ∗ = 2 T ∗ = 3 T ∗ = 4 T ∗ = 2 T ∗ = 3 T ∗ = 4

0.33 0.803 0.940 1.033 1.409 1.161 1.051
0.40 0.844 0.978 1.051 1.292 1.096 1.018
0.47 0.862 0.978 1.046 1.236 1.081 1.010
0.54 0.851 0.951 1.007 1.240 1.103 1.041
0.61 0.868 0.948 0.991 1.208 1.103 1.054
0.69 0.882 0.962 0.995 1.180 1.082 1.046
0.75 0.914 0.974 1.005 1.135 1.066 1.032
0.86 0.941 0.984 1.002 1.099 1.052 1.032
0.96 0.975 0.997 1.004 1.059 1.036 1.028

We found that the thermo-osmotic coefficient depends
weakly on the difference in interaction strength between
fluid and matrix particles (ε∗

23 − ε∗
13), see Figs. 8 and 9.

Kedem and Katchalsky [36] argued that if a membrane
is non-selective (i.e. ε∗

23 − ε∗
13 = 0), then LDV = 0. The

weak dependency of DP on (ε∗
23 − ε∗

13) shown in Fig. 9
suggests that LDV is small also for ε∗

23 − ε∗
13 �= 0. If we

expand DP in Eq. (16) in powers of LDV , we get to first
order

DP ≈ − 1
T

(
LV q

LV V
− LDq

LDD

LDV

LV V

)
(40)

Similarly, expanding Eq. (14), the same way gives

S ≈− 1
x1x2RT 2

(
LDq

LDD
− LV q

LV V

LDV

LDD

) (
1+

∂ ln γ1

∂ ln x1

)−1

(41)

Considering DP as a linear function of LDV /LV V and
S as a linear function of LDV /LDD to this first order,
we find that the constant term in DP is the coefficient
of the linear term in S (apart from factors of mole frac-
tions and temperature) and vice versa. This shows how
S and DP are coupled. Since S and DP are both pos-
itive in this case, LV q/LV V and LDq/LDD must both
be negative. Figure 9 shows a positive trend for DP

as function of ε∗
23 − ε∗

13, which means that an increase
in ε∗

23 − ε∗
13 gives a decrease in LDV /LDD. Similarly,

Fig. 7a shows a slight negative trend for S as function
of ε∗

23 − ε∗
13, which means that an increase in ε∗

23 − ε∗
13

gives an increase in LDV /LV V .
Finally, we shall point at a relation between the

Soret effect in porous media and bulk fluids. Consider
the zeroth-order term in Eq. (41). For a bulk two-
component fluid mixture, the Soret coefficient is defined
as the ratio between the thermodiffusion and molecular
diffusion coefficients (see, e.g., Platten [37]),

Sbulk =
DT

D
(42)

where DT and D are related to the coefficients L1q and
L11 for binary fluid mixtures [38]. By analogy, we may
define

DT = − LDq

x1x2T 2
(43)

and

D =
x1

T
LDD

∂μ1

∂x1
(44)

which gives

S(LDV =0) =
DT

D
(45)

for the porous system. The condition (LDV = 0) means
that Eq. (45) applies to a non-selective membrane. For
a non-selective membrane, LDq is analogous to L1q for
binary mixtures and LDD is analogous L11.

The dip in DP at φ ≈ 0.4 is somewhat mysterious.
It is almost independent of the wettability preferences
(including neutral). The color case shows the same dip.
This means that the observed dip in DP is not a conse-
quence of non-ideal mixture behavior. Nor is it a func-
tion of the interaction between the fluid and the matrix.
The fluid density in the matrix shows a slightly irreg-
ular trend around the same porosity (Fig. 10). It must
therefore be caused by factors that are unrelated to the
wettability preference. We have speculated that it is
a consequence of packing of fluid particles in tetrahe-
dral and octahedral voids in the lattice of matrix par-
ticles. Since the matrix particles are at fixed positions,
the size of the voids will increase in a regular manner
with increasing porosity. For instance, the diameter of
an inscribed sphere in an octahedral hole at φ = 0.4
is approximately three times the diameter of the fluid
particle. Another possible explanation is related to the
balance between the thermal and hydrostatic forces at
steady state. The temperature gradient will drive the
fluid from cold to hot along the matrix particle sur-
faces due to the gradient in surface tension [39], and the

123



Eur. Phys. J. E (2022) 45 :41 Page 13 of 15 41

pressure build-up will drive the fluid back in the open
pores. This balance may be shifted one way or the other,
depending on the porosity and the pore structure, and
so give an irregular behavior of DP. A more detailed
analysis of the packing of fluid particles in the matrix
will be necessary to resolve this question.

6 Conclusions

In this work, we have used non-equilibrium thermody-
namics to show that a temperature difference across
a binary mixture of isotopes in a porous medium does
not only lead to separation of components, but also to a
pressure difference over the medium. The first observa-
tion is well known from studies of Soret equilibria. The
other effect, called thermo-osmosis, is special for porous
media. These processes are simultaneous and coupled.
The interplay of the effects may lead to new systematic
studies of porous media in a thermal gradient.

Numerical values for the Soret and thermo-osmotic
coefficients were computed with non-equilibrium molec-
ular dynamics simulations. The two fluid components
were identical except for their molecular masses, which
had a ratio of 10:1. Two porous systems were used, one
of them was in contact with a bulk two-component fluid
reservoir (System A), while the other filled the entire
system volume (System B). Both systems were closed
in the sense that the number of particles was constant
during the simulations.

We found that both the Soret and thermo-osmotic
coefficients depend strongly on the porosity and to
some extent on the two components’ ability to wet
the matrix particles. The Soret coefficient, given by
the ratio between the composition profile and the tem-
perature profile, decreases monotonically from the bulk
value at 100% porosity down to about 25% of the bulk
value down to 30% porosity. The values at porosities
above 80% are in good agreement with previous results
for bulk liquids. Below 80%, systems A and B gave quite
different values for the Soret coefficient, depending on
where fluid samples were taken for compositional analy-
sis. If the compositions were based on samples from the
reservoirs in System A, the values were biased by the
capacity of the reservoirs to sustain absorption in the
matrix. With System B, the Soret coefficient was deter-
mined from the mole-fraction and temperature gradi-
ents in the matrix. We also found that the preferential
absorption of the two components had a dramatic effect
on the Soret coefficient in Series A, but not in Series B.

The thermo-osmotic coefficient, given as the ratio
between the pressure difference and the temperature
difference in the two reservoirs in System B, is 0 at 100%
porosity and increases non-monotonically with decreas-
ing porosity with a dip around 40% porosity. The fluid
density and mole fraction in the pores show an anomaly
in the same porosity region. We have not been able to
find the physical reason for this dip other than it may be
related to the structure of the matrix. This illustrates
that the absorption and perhaps also the permeability

of the porous medium is a complex function of porosity
due to the geometry of the matrix structure versus the
size of the particles. In the present case, the effect of
the Soret equilibrium on the thermo-osmotic coefficient
is small and vice versa. The thermo-osmotic coefficients
are surprisingly large, and of the same order of magni-
tude as has been observed in frost heave.

We show that a thermodiffusion coefficient may be
defined for porous systems by analogy to the definition
for bulk fluids. If the porous medium is non-selective
with respect to the fluid components, this definition
gives the Soret coefficient by direct analogy to bulk flu-
ids.

Our findings have two important implications for
experimental designs made to measure the Soret coef-
ficient in porous media. (1) When the Soret coefficient
is measured with the packed column method and fluid
samples are drawn from outside the porous medium, the
values may be distorted by absorption in the medium.
(2) The Soret effect may depend on variations in the
wettability.
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Appendix A: Definitions of the coefficients
in Eqs. (14)–(16)

The transformation from Eqs. (2)–(3) to (10)–(12) gives the
following new coefficients:

LV V = L11V
2
1 + L12V2V1 + L21V1V2 + L22V

2
2 = L11V

2
1

+ 2L12V1V2 + L22V
2
2 (A1)

LDD =
L11

x2
1

+
L22

x2
2

−
(

L12

x1x2
+

L21

x2x1

)

=
L11

x2
1

+
L22

x2
2

− 2
L12

x1x2
(A2)

LqV = Lq1V1 + Lq2V2 = LV q (A3)

LqD =
Lq1

x1
− Lq2

x2
= LDq (A4)

LV D =

(
L11

x1
− L12

x2

)
V1 +

(
L21

x1
− L22

x2

)
V2 = LDV

(A5)

The coefficient Lqq is unaffected, and the symmetry of the L-
coefficients (Lij = Lji) is preserved by the transformation.

Appendix B: Definitions of reduced quanti-
ties in Lennard–Jones units

Property Dimension Definition in L-J units

Temperature K T ∗ = kBT
ε11

Pressure Pa P ∗ = P
σ3
11

ε11

Number density mole m−3 ρ∗ = ρσ3
11

Heat flux Joule m−2s−1 J∗
q = Jq

σ3
11

ε11

(
m1
ε11

)1/2

Molar (particle)
flux

mole m−2s−1 J∗
i = Jiσ

3
11

(
m1
ε11

)1/2

Diffusion flux mole m−2s−1 J∗
D = JDσ3

11

(
m1
ε11

)1/2
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