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Abstract The autocorrelation function is a statistical tool that is often combined with dynamic light
scattering (DLS) techniques to investigate the dynamical behavior of the scattered light fluctuations in
order to measure, for example, the diffusive behavior of transparent particles dispersed in a fluid. An
alternative approach to the autocorrelation function for the analysis of DLS data has been proposed decades
ago and consists of calculating the autocorrelation function starting from difference of the signal at different
times by using the so-called structure function. The structure function approach has been proven to be
more robust than the autocorrelation function method in terms of noise and drift rejection. Therefore, the
structure function analysis has gained visibility, in particular in combination with imaging techniques such
as dynamic shadowgraphy and differential dynamic microscopy. Here, we show how the calculation of the
structure function over thousands of images, typical of such techniques, can be accelerated, with the aim
of achieving real-time analysis. The acceleration is realized by taking advantage of the Wiener–Khinchin
theorem, i.e., by calculating the difference of images through Fourier transform in time. The new algorithm
was tested both on CPU and GPU hardware, showing that the acceleration is particularly large in the case
of CPU.

1 Introduction

Dynamic light scattering (DLS) techniques have been
used for decades to obtain information about the
dynamical behavior of a variety of samples spanning
from soft matter physics to biology [1]. The main idea
of DLS is to measure the intensity of the light scattered
by a transparent sample at a given angle and statisti-
cally analyze its fluctuations in time in order to obtain
information on the motion of the components inside
the sample. For example, DLS analysis of the Brown-
ian motion of particles dispersed in fluid allows mea-
suring their diffusion coefficient and then, ultimately,
their size distribution thanks to the Stokes–Einstein
relation between the particles’ mobility and their size.
The quantity classically obtained in DLS instruments
is the autocorrelation function, i.e., the direct output
of “correlators” that compute the scalar product of the
intensity signal coming from the light detector by the
same quantity at different delay times. An alternative
approach to the autocorrelation function has been pro-
posed several decades ago and consists in computing the
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structure function. The structure function is obtained
by analyzing the autocorrelation of the differences of
the signal at different times [2]. At the same time, it
was proposed to develop “structurators” in place of the
more widely known correlators [3]. With the spread of
pixelated detectors, imaging techniques like dynamic
shadowgraphy, dynamic Schlieren [4–9], and differential
dynamic microscopy (DDM) [10–12] have taken advan-
tage of the use of the structure function because of its
improved robustness for data analysis in terms of rejec-
tion of background signal deriving from steady-state
and slow-drift noise sources as compared to the auto-
correlation function approach [2,13]. This is due to the
intrinsic nature of the structure function that is based
on the difference of signal elements of increasing time
delay so that any spurious signal changing on times
longer than the utilized time delay is subtracted. By
using the spatial Fourier analysis, these imaging tech-
niques allow scientists to investigate the temporal evo-
lution of a sample at the different length scales present
in a set of images recorded at different times [13]. For
this reason, they have gained popularity, especially in
the field of soft matter physics. In fact, the combina-
tion of the robustness of the structure function anal-
ysis applied to simple and/or already available opti-
cal setups has allowed them to be used both in tra-
ditional laboratories [10–12], and in orbiting experi-
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ments on the ISS [14–16] for investigating the dynam-
ics of rather different samples ranging from colloidal
particles [10] to bacteria [17], but also from biological
cells [18] to density fluctuations in and outside thermal
equilibrium [4,19], and many others, as also witnessed
by several review articles [12,13,20,21].

As stated, the structure function approach can be
combined with imaging techniques, thus requiring an
optical system like transmitted light microscopy [10],
fluorescence-based microscopy [22], dark-field imag-
ing [23] to acquire series of images. The series of
images should be processed by custom-made soft-
ware to compute the structure function, as defined
by Schultz-Dubois and Rehberg [2] and later imple-
mented to Schlieren [8] and Shadowgraphy [8] and opti-
cal microscopy [10,24]. However, a rapid evaluation of
the structure function is fundamental to achieve real-
time analysis in laboratory conditions and may play
a crucial role in the utilization of such an approach
in industrial and commercial applications. The avail-
able software programs calculate the structure func-
tion in different ways. Some process the images by cal-
culating the differences between pairs of images first,
and then evaluate the bi-dimensional fast Fourier trans-
forms (FFT) of the differences [11]. In other cases, they
first compute the FFT of the images and then calculate
the differences in Fourier space [25].

Since the number of images that can be acquired
and the number of pixels therein have considerably
increased in the latest two decades, the computational
load to evaluate the structure function has increased
consequently. In the meantime, also the computational
capabilities of modern computers have grown, but a
major breakthrough in reducing the computation time
of the structure function was achieved when researchers
started to implement the calculation on graphics pro-
cessing units (GPU) [22,25]. The implementation of this
computational task on GPU allowed a decrease in the
computational time by a factor of 10–30, thereby reduc-
ing the data analysis time from several hours to a few
tens of minutes.

In the present article, we present a different route to
calculate the structure function of the image series tak-
ing advantage of the Wiener–Khinchin theorem [26,27].
The calculation is performed by using the Fourier trans-
form in time rather than by calculating differences of
spatial FFTs. This approach enables a further opti-
mization step and allows us to compute the struc-
ture function faster than state-of-the-art existing soft-
ware. We obtain a considerable speed up of the calcu-
lation time, particularly when GPU acceleration is not
available.

The article is organized as follows. First, we provide
an example of application by means of Shadowgraph
images that are later utilized to test the software per-
formances. Then, we discuss our method for calculating
the structure function and compare it with state-of-the-
art algorithms [25]. Finally, we discuss the results and
provide conclusions.

2 Test case: shadowgraph observation of
density fluctuations

In this section, we describe a free diffusion experiment
obtained by carefully layering two miscible fluids where
the denser one is placed at the bottom of the container,
so to obtain a gravitationally stable condition. The fluid
system is investigated by shadowgraphy, i.e., an optical
technique able to measure density fluctuations within
the fluid in terms of series of images Im from which one
can extract the density fluctuation structure function
by means of the DDA algorithm.

In the classical implementation of the DDA algorithm
[2,4,8,10], the structure function is calculated by first
evaluating the differences among all pairs of images and
then by computing the power spectra of those differ-
ences, and finally, by averaging the power spectra over
all the pairs of images acquired with the same time
delay. This procedure can be defined as follows:

d (m) =
1

N − m

N−1∑

n=m

|Fxy (In−m − In)|2 , (1)

where the indices n and m run from 0 to N − 1 and
Fxy indicates the bidimensional FFT of the images in
space. The absolute value operation “|. . .|” is intended
for every wave vector component of the FFT.

The initial condition is prepared in two steps: First,
we introduce pure water by completely filling a glass
cylindrical cell (Hellma, 120-OS-20); second, we slowly
inject the glycerol and water solution (20 % w/w) until
reaching half of the cell. By using this procedure, we
obtain a two-layer sample in which the two miscible
liquids are separated by a vanishing horizontal inter-
face and are stabilized by the gravitational force while
the only mechanism relaxing the concentration gradient
with time is mass diffusion. The dissolving concentra-
tion gradient provides a non-equilibrium condition that
amplifies the spontaneous velocity fluctuations within
the fluid [28]. This results in the appearance of non-
equilibrium fluctuations at all wavelengths that can be
visualized by means of the Shadowgraph setup as done
in several publications [4].

For shadowgraph observation, the cell is illuminated
by a collimated plane-parallel beam obtained by using
a super-luminous diode (Superlum, SLD-MS-261-MP2-
SM) with a wavelength of λ = (675±13) nm and prop-
agating along the vertical axis. The light propagates
through the sample and the density fluctuations induce
local fluctuations of the refractive index that scatter the
light field. A charged coupled device (CCD) records the
interference between the primary laser beam and the
light scattered by refractive index fluctuations inside
the fluid. We acquired sets of N = 2000 images In of
512 × 512 pixels at the frame rate of 25 Hz.

In Fig. 1 we show: (a) a typical Shadowgraph image
In, (b) a typical image difference (In−m − In) with
enhanced contrast to make the tiny density fluctua-
tions visible, and (c) its bidimensional power spectrum
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Fig. 1 Sample data adopted for the tests reported in this
article. The data corresponds to a measurement of the non-
equilibrium concentration fluctuations in a free-diffusion
experiment. a Sample image consisting of 512 × 512 pixels,
the size of the image in the real space is 19 mm. b Difference
of two images taken 4 s apart. c Structure function averaged
over 1000 difference of image pairs with 4 s time delay. d
Angular average of bi–dimensional structure functions like
the one shown in c for different time delays. d–inset Struc-
ture function as a function of the time delay for three differ-
ent wave vectors. e Time decay τ(k) as obtained by fitting
the structure functions with a model function containing a
single exponential decay

|Fxy (In−m − In)|2 displayed in logarithmic scale. The
two images considered for the difference were taken 4 s
apart so that the signal is uncorrelated for most of the
wave vectors, and the structure function has already
reached its maximum. In panel (d), the azimuthal aver-
age 〈d(m)〉φ of the structure functions are shown for
many delay times m. The inset of panel (d) shows the
structure function as a function of the delay time for
three selected wave vectors. The strong oscillations as
a function of the wave vector are related to the shad-
owgraph transfer function as described in literature [9].
The structure function increases as a function of the
delay time at any wave vector and can be analyzed

to investigate the diffusive behavior of concentration
fluctuations during the diffusion process. The structure
function is modeled as detailed in the literature [5], by
providing a suitable model for the intermediate scat-
tering function, which in the present case is a single
exponential decay. The fitting procedure thus provides
a measurement of the time decay τ(q) for any wave
vector q as shown in panel (e). The right part of the
plot shows the typical 1/(Dq−2) behavior of concentra-
tion non-equilibrium fluctuations from which one can
extract the value of the mass diffusion coefficient, like it
has been performed for thermodiffusion experiments [5].
The left part of the plot shows the effect of gravity
on the decay times of concentration non-equilibrium
fluctuations already reported in several ground-based
experiments [8]. The latest part of such analysis is out
of the scope of the present paper and will be published
in a separate work.

3 Different approaches to the structure
function

The calculation of the structure function involves eval-
uating differences, FFTs and averages that can be per-
formed efficiently on a GPU as parallel operations [22].
This approach can be optimized by exploiting the lin-
earity of the FFT and the available hardware mem-
ory as described in ref. [25]. The calculation of Eq. 1
can be approached via a two-step algorithm. First, all
FFTs Ĩn = FxyIn of the images In are calculated and
stored in the local memory. Second, each matrix d(m)
is evaluated by averaging differences of the FFTs of
images (Ĩn−m − Ĩn) rather than FFTs of image dif-
ferences Fxy(In−m − In) exploiting the linearity of the
FFT operation. This approach reduces the number of
operations to be performed because the matrices Ĩn can
be used several times for different d(m). Thus, for N
images, the number of FFTs to be computed is reduced
from O(N×N) to O(N). While this optimization allows
reducing the number of FFTs, the overall algorithm has
a global computational complexity of O(N×N). We see
this from Eq. 1 because there are as many time delays m
as images, and for each m the matrix d(m) is obtained
via a sum over (N − m) images.

In this work, we present a new approach to reduce
the global computational complexity of the algorithm
to O(N × log2(N)) by using the Wiener–Khinchin theo-
rem [26,27], which states that, for a stationary random
process, the autocorrelation function can be calculated
by the power spectrum (in time) of the process.

We expand the square modulus operation of Eq. 1 in
the following way:

d (m) =
1

N − m

N−1∑

n=m

(
|Ĩn−m|2 + |Ĩn|2 − 2Re

(
Ĩ∗

n−mĨn

))
,

(2)

123



146 Page 4 of 10 Eur. Phys. J. E (2021) 44 :146

where the symbol “∗” indicates complex conjugation.
In the sum, the first term |Ĩn−m|2 is the average of
the first (N − m) spatial power spectra, while the sec-
ond term |Ĩn|2 is the average of the last (N − m)
spatial power spectra. Both terms have a computa-
tional complexity of O (N). The last term, identified
by the product Ĩ∗

n−mĨn, is the autocorrelation func-
tion of the image FFTs. The autocorrelation is the
only term in Eq. 2 which has computational complexity
of O (N × N). By applying the Wiener–Khinchin theo-
rem [26,27], the autocorrelation function can be evalu-
ated via the power spectrum in the temporal frequency
Fourier space. The advantage of computing the auto-
correlation function via the Fourier transform in time
is given by the speedup provided by the FFT algorithm
allowing to reduce the computational complexity from
O (N × N) to (O (N × log2 (N))) [29].

4 Performance analysis

To compare the new algorithm with other available ref-
erence software [25,30–32], we developed a new soft-
ware program that implements the algorithm described
in ref. [25] and the new algorithm on CPU and GPU
hardware, for a total of four execution modes. Fur-
ther comparisons with other software are presented
in “Appendix D” showing that the method reported
in [25] was already one of the fastest approaches to cal-
culate the structure function before the present work.
To distinguish the two algorithms, we will refer to the
method reported in ref. [25] as WITHOUT_FT and
the technique discussed in this article as WITH_FT,
where the label FT stands for Fourier transform in
time. Both methods calculate the final result in two
steps. The first step is common and consists of calcu-
lating and storing the FFTs of the images in the avail-
able free memory: RAM for the CPU versions and G-
RAM (global RAM) for the GPU implementations. In
the second step, the wave vectors are analyzed indepen-
dently according to the different schemes. If the wave
vector data exceeds the capacity of the available mem-
ory, both algorithms split the job into several groups at
the price of recalculating the image FFTs several times
(see “Appendix C” for more details). The program is
written in C++11 and CUDA v.10.2 with graphical
support of the OpenCV 3.0 library. We tested the pro-
gram with the Fourier transform libraries CUFFT (ver-
sion provided in CUDA v.10.2) for GPU execution and
FFTW 3.3.3 [33] for the CPU implementations. The
code was compiled with MS compiler v120 and the
compiler of CUDA v.10.2 in Visual Studio 2019. The
program was executed on a machine with the following
specifications:

– CPU: Intel�CoreTM i9-9880H,
– 32 GB DDR4 RAM,
– Graphic card: NVIDIA Quadro RTX 4000 with 8GB

of dedicated G-RAM memory,
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Fig. 2 Execution time as a function of the total number of
images for images of 512 × 512 pixels. The data points cor-
responding to the WITH_FT algorithm have square mark-
ers. The data points corresponding to the WITHOUT_FT
algorithm have circular markers. The markers have colored
filling for the GPU modes, and have white filling for the
CPU modes

– 512 GB SSD drive—PCIe, performance class 40.

Test images of 512 × 512 pixels were taken from the
experiment described in Sect. 2. For other sizes, syn-
thetic images were generated with n × n pixels hav-
ing 16 bit depth, similar to the real images. In our
tests, we considered image sets composed by maximum
214 = 16384 images, and we limited the execution time
of the program to less than 105 s.

In the first test, we ran all the algorithms on CPU
and GPU with images composed of 512×512 pixels. For
comparison, we made use of 8 GB of RAM for execut-
ing the program on the CPU. In this way, the CPU and
the GPU could access the same amount of RAM and G-
RAM, respectively. The execution times of the program
are presented in Fig. 2, in which the times for all four
execution modes are plotted as a function of the num-
ber of images used for the test. As expected from the
results reported in ref. [25], the WITHOUT_FT algo-
rithm executes more than 30 times faster on GPU than
CPU. The GPU hardware is also faster than the CPU
in executing the WITH_FT algorithm, but the speed-
up factor never exceeds a factor of two. We see that the
WITH_FT scheme is faster than the WITHOUT_FT
method when the image number processed in one run
of the program is larger than ∼ 1000. If the condition
N � 1000 is met, both CPU and GPU versions of the
WITH_FT algorithm execute quicker than the GPU–
WITHOUT_FT implementation, reaching a maximum
speed-up factor of 10–12 for 16384 images.

Figure 3 presents the fractional time spent by the
program in the four modes to compute the images’
FFTs (step one), process the time sequences (step two)
and perform memory IO operations (disk and host-
device). The IO operations named host-device include
the data transfers between the RAM and the G-RAM,
and it exists only in the GPU implementations. In
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Fig. 3 Fractional execution time of the different tasks of
the program as a function of the total number of images.
The length of the colored bars represents the fractional time
spent by the program to execute the different operations:
disk IO, host–device data transfers, step 1 and step 2. In this
test, we used images of 512×512 pixels. The first row (graphs
(a), b) presents the fractional times spent in CPU mode and
the second row (graphs c, d) in GPU mode. The first col-
umn shows the fractional times of the WITH_FT algorithm
(graphs a, c) and the second column of the WITHOUT_FT
algorithm (graphs b, d). Data of the CPU-WITHOUT_FT
version for 16384 images are no reported because the total
execution time was exceeding 105 s

the figure, we normalized the fractional times by the
total execution time to highlight the different work-
loads for executing each part of the program. As a
function of an increasing number of images, the work-
load of step two compared to the other operations
remains balanced in the CPU-WITH_FT implemen-
tation, and it reduces in the GPU-WITH_FT imple-
mentation. Conversely, the WITHOUT_FT algorithm
spends more fractional time during the second step as
the number of images increases both in the CPU and
the GPU modes. Combining the information of Figs. 2
and 3, we see the advantage of the new implementa-
tion applied to the problem of calculating the structure
function. The WITH_FT algorithm is faster than the
WITHOUT_FT scheme for a large number of images as
a consequence of the reduction in computational com-
plexity in processing the time sequences of the wave
vectors.

In a second test, we analyzed the execution per-
formance of the GPU-WITH_FT and GPU-WITH
OUT_FT algorithms for squared images of different
sizes. Figure 4 presents the ratio of execution times
between the GPU-WITH_FT execution over GPU-
WITHOUT_FT execution for a different number of
images and different image sizes. In analogy to the
512 × 512 pixels example, the WITH_FT method is
faster than the WITHOUT_FT technique for more than

Fig. 4 Ratio of execution times on GPU of the
WITHOUT_FT against the WITH_FT algorithm as a func-
tion of different numbers and sizes of images. The transpar-
ent red plane marks the condition in which both algorithms
process the images within the same time

∼ 500−1000 images. The red plane in the figure marks
the condition in which both algorithms complete exe-
cution in the same amount of time. We notice that
small image sizes obtain a larger speedup gain as com-
pared to large images. For example, images composed
of 128 × 128 pixels obtain up to a ∼ 100 speed-up gain
in the execution time, against only ∼ 4 obtained with
images composed of 1024×1024 pixels. In fact, the num-
ber of pixels per image affects the load of data transfer
operations and FFT of the images in two ways. First,
calculating the bidimensional FFT requires more time
for images composed of many pixels. Second, the FFTs
are calculated several times if the wave vector compo-
nents of all the images exceed the available memory.
Therefore, at processing images composed of many pix-
els, both the WITH_FT and WITHOUT_FT algorithm
must spend a large fraction of time preparing the time
sequences before their analysis. Considering for exam-
ple the WITH_FT at processing 16384 images, the first
step and memory IO operations occupy 44% of the exe-
cution time with images composed of 1024 × 1024 pix-
els, and they occupy 62% of the execution time for the
images composed of 2048 × 2048 pixels.

The performance loss caused by large datasets can be
partially mitigated by adopting larger memory areas
to store the image FFTs. As a final test, we pro-
cessed 16384 images of 512× 512 pixels with the CPU–
WITH_FT algorithm releasing to the program 23 GB
of RAM. In this configuration, we obtained a speedup
of a factor of 2 compared to the previous tests in which
the RAM was limited to 8 GB, thanks to the larger
available memory area. In fact, the image’s FFTs are
recalculated six times by using 8 GB of RAM, but only
two times by using 23 GB of RAM. We describe this
test in more detail in “Appendix C”.
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5 Conclusion

In this article, we presented a new algorithm to calcu-
late the structure function for image sets obtained by
means of suitable optical techniques, like dynamic shad-
owgraphy, dynamic Schlieren, or differential dynamic
microscopy. The algorithm is based on the temporal
FFT of the image 2D spatial FFTs, rather than on dif-
ferences of the latter. The software developed to imple-
ment the new algorithm has been tested against several
other software available and it outperforms all of them
by different factors depending on the image size and
number.

In particular, we tested the new software with the
one we developed a few years ago [25]. While the old
approach executes ∼ 30 times faster in the GPU mode
as compared to the CPU mode, the new method exe-
cutes all the calculations within a similar amount of
time on the GPU and the CPU. This result can be a
valuable one for all the scientists that are not equipped
with GPU hardware.

The increased performance in terms of time-saving is
in itself a non-negligible advantage. However, the main
reason for developing more performing software is to
try to achieve real-time analysis of the images, so that
the scientist can judge the quality of the measurement
and thus modify the experimental parameters during
the measurement itself. Analyzing with a delay of some
hour means that the experiment must be performed
again if the resulting data are not good in terms of
signal-to-noise ratio or affected by other experimental
issues.

The source code of the program developed in this
work, which executes the algorithm both on CPU
and GPU, is released under the GNU General Pub-
lic License v.3 [34] and is freely available for download
at [35]. The program can readily be used for calculating
the structure function from an arbitrary set of images.
A more efficient version of the code (about 10 times
faster on GPU) is currently under development and will
be commercially available in the next future.
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Appendix A: Azimuthal average

In this appendix, we describe how the azimuthal average
of the structure function is calculated in our software pro-
gram. Each d (m) matrix is reduced by the average in a vec-
tor 〈d (m)〉φ = fk (m), where k is an integer number that
indicates the amplitude of the wave vector. The average is
performed over the pixels located at different circular sectors
in the 2D-spatial-FFT plane as depicted in Fig. 5. We per-
form the average with an antialiasing algorithm that splits
each pixel in an 8 × 8 matrix. Each sub-pixel is assigned its
fractional position (kx, ky) inside matrix so that its value
can be averaged at the wave vector:

k =
[ √

k2
x + k2

y

]
, (A.1)

where “[. . .]” indicates the rounding operation.

Appendix B: Analysis of the time sequences

In this appendix, we describe how we implemented the com-
putation of the structure function on a single time sequence
by using Eq. 2 in order to obtain the final result.
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We split the calculation on the time sequence in two parts
d (m) = da (m) + dc (m) where:

da (m) =
1

N − m

N−1∑

n=m

(
|Ĩn−m|2 + |Ĩn|2

)
, (B.1)

dc (m) =
2

N − m

N−1∑

n=m

Re
(
Ĩ∗

n−mĨn

)
. (B.2)

The term da (m), i.e., the average of the 2D spatial power
spectra of the images with a computational complexity of
O (N), is calculated by using the following iterative formula:

da (N − n − 1) =
n

n + 1
da (N − n) +

|In|2 + |IN−n−1|2
n + 1

,

(B.3)
where the index n is in the range [0, N − 1].

The term dc (m) expresses the autocorrelation function of
the time sequence of image FFTs. This second term is cal-
culated by using the FFT in time taking advantage of the
Wiener–Khinchin theorem. In this process we consider two
requirements. First, the maximum performance gain obtain-
able by using the FFT algorithm is expected if the support
points of the time sequences are a power of two. Second, the
summation over n of Eq. B.2 takes into account only N −m
pairs of Ĩn functions. These two requirements are incompat-
ible with evaluating the FFT directly on N support points.
The incompatibility emerges because the number N is not,
in some cases, a power of two, and because the FFT algo-
rithm imposes periodical boundary conditions on the time
sequence. To meet both requirements, we zero-padded the
time sequences to N2 support points, where N2 is given by:

log2 N2 = �log2 (N)� + 1 , (B.4)
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Fig. 5 Pictorial representation of the azimuthal average
scheme used to average the d (m) matrices in the Fourier
plane. A few pixels of the d (m) are drawn as solid black
squares on the plane. All the pixels that intersect a generic
circular sector k are considered to compute the azimuthal
average of a d (m) matrix at the wavevector k. A generic
pixel is enlarged to describe the antialiasing method that
was adopted in the analysis. The subpixel having differ-
ent colors are assigned to different wave vectors k in the
azimuthal average as indicated by the color-coded labels. In
the figure, we depict the configuration in which the pixel is
subdivided in a 5×5 matrix, but we used an 8×8 subdivision
in the final analysis

where “�. . .�” denotes the ceiling operation. This padding
operation allows us to take advantage of the FFT speed-up,
and calculate exactly Eq. 2, without any influence caused
by the periodical boundary conditions. The calculation of
dc (m) for a single time sequence can be broken down into
the following operations.

– The time sequence is zero-padded to N2 complex sup-
port points.

– The padded sequence is Fourier-transformed by FFT in
time.

– Each element of the FFT is squared in modulus obtain-
ing the power spectrum of the time sequence.

– The inverse FFT is applied to the power spectrum.
– The new vector is truncated to N support points and

the imaginary part is discarded.
– The resulting sequence is the autocorrelation of the

time sequence and it is normalized by the ramp vector
1/ (N − m).

Finally, da (m) and dc (m) are added together to obtain the
structure function d (m).

Appendix C: Comparison with other soft-
ware

In this appendix, we compare the execution time of our
algorithm with other software programs that calculate the
structure function. For the comparison, we used the pro-
grams specified in refs. [25,30–32]. The program of ref. [25] is
already introduced in the main text with the name of GPU-
WITHOUT_FT. We will refer to the software reported
in [30] as Soft_1, the software reported in [31] as Soft_2 and
the software reported in [32] as Soft_3. Soft_1 and Soft_2
are written in Matlab and Soft_3 is written in Python. We
benchmarked the execution time of all the programs against
each other by analyzing images of 512 × 512 pixels.

In Table 1, we present the total execution time of the
different software to complete the calculation of the struc-
ture function as a function of the image number. We see
that the GPU-WITHOUT_FT algorithm executes faster or
within comparable times compared to Soft_1-3 and, thus,
was selected as the software for comparison in the main
text.

We see that, compared to Soft_1-3, the new program
speeds up the calculation by a factor larger than 10
while processing more than 1024 images. For example, the
WITH_FT algorithm is about 415, 12, 18 times faster than
Soft_1, Soft_2 and Soft_3, respectively, at processing 2048
images for both versions CPU and GPU and about 3 times
faster than the GPU-WITHOUT_FT.

Appendix D: Group execution

The program described in this work splits the calcula-
tions into groups if the data of all wave vector components
for all the images exceeds the available storage memory.
The method WITHOUT_FT uses a first-in-first-out (FIFO)
memory scheme already described in ref. [25]. This approach
aims to calculate groups of complete d (m) matrices. The
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Table 1 Execution times of the programs Soft_1, Soft_2, Soft_3, GPU-WITHOUT_FT (label “NO_FT”), GPU-WITH_FT
(label “GPU”) and CPU-WITH_FT (label “CPU”)

N Time (s)

Soft_1 Soft_2 Soft_3 NO_FT GPU CPU

64 24 9 6 < 1 12 1
128 70 17 11 1 14 2
256 246 35 51 3 16 4
512 923 80 113 9 20 8
1024 3516 181 215 31 27 17
2048 14494 430 630 113 38 35
4096 51343 1022 1370 446 86 117
8192 > 105 2091 2889 1740 190 314
16384 > 105 4638 5783 6921 574 922

The label “N” indicates the number of images. For the comparison, we used images composed by 512 × 512 pixels
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Fig. 6 Execution time of the WITH_FT algorithm on
CPU hardware on images of 512 × 512 pixels and limited
RAM of 23 GB. The vertical line marks the crossing point
in which the algorithm divides the execution from one into
two groups. The labels “Step 1” and “Step 2” refer to the
steps of the algorithm described in the main text and the
label “Disk” refers to the memory I/O operations

WITH_FT algorithm, instead, operates sequentially on dif-
ferent groups of wave vectors for all the d (m) and saves the
partial results of each group on the hard drive. The par-
tial results are merged at the final stage of the program.
In practice, in both algorithms, the images are loaded and
Fourier transformed one time for each group because only
a part of the FFTs data can be saved on the local memory.
The impact of repeating these operations over the entire
execution time is presented in Fig. 6, in which we present
the execution time as a function of the number of images
to process. In this test, we executed the WITH_FT algo-
rithm on CPU hardware with images of 512 × 512 pixels by
releasing to the program 23 GB of RAM. In the figure, the
vertical red line marks the crossing point from one-group to
two-group execution. We see that the time spent by the pro-
gram in memory operations and step one suddenly doubles
by crossing the line. This happens because the bidimensional
FFTs of the images and the corresponding I/O operations
must be executed two times instead of only one.
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Fig. 7 Execution time of the WITH_FT algorithm as a
function of the different number of threads. The total num-
ber of images is indicated in the legend together with the
hardware platform of execution. Image size is 512×512 pix-
els

Appendix E: Number of threads

The WITHOUT_FT algorithm executes efficiently with a
parallel computing scheme on GPU hardware which makes
use of all the available CUDA-threads. This is not the case
for the WITH_FT scheme. To analyze the influence of par-
allel computing on the execution time of the WITH_FT
algorithm, we implemented the WITH_FT method with
a user-configurable number of threads both in the CPU
mode and the GPU mode. The number of threads in the
CPU mode refers to the number of threads spawned to exe-
cute a particular task, such as the FFT operations. In the
GPU mode, the number of threads selects the amount of
CUDA threads of each CUDA kernel. In both CPU and
GPU modes, the number of threads also determines the
number of time sequences that are processed in parallel.
Figure 7 presents the total execution times of the program
as a function of the different number of threads for 8192
and 16384 images. In the test, we selected images composed
of 512 × 512 pixels. Parallel computing achieves a minimal
or detrimental impact on the speed-up factor in the CPU
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Fig. 8 Relative deviation of the structure function values
computed by using the different algorithms specified in the
figure

mode. In the GPU mode, the performance gain saturates at
around 32 threads, with a peak performance at 256 GPU
threads. Based on this result, we selected the optimal num-
ber of two CPU threads and 256 GPU threads for all other
tests presented in this work.

Appendix F: Numerical deviations

In this appendix, we compare the numerical discrepancies of
the program emerging from the execution of the DDM anal-
ysis by using different algorithms and hardware platforms.
The deviations in the calculated structure functions are
caused by the different numerical approaches and adopted
libraries, each of which introduces different numerical errors.
To quantify these discrepancies, we compared the analysis
results of the data presented in Fig. 1 obtained by the four
execution modes of the program. To quantify the deviations,
we calculated the relative deviation δ as a function of the
wave vector k for the azimuthal averages of the structure
function. We define the deviation of the structure functions
as:

δk =
2

N

∑

m

∣∣∣∣
fk (m) − gk (m)

fk (m) + gk (m)

∣∣∣∣ , (F.1)

where m refers to the time delay in the range [1, 2000] and
fk(m) and gk(m) are the azimuthal averages of the d(m)
matrices using different algorithms. Figure 8 shows the value
of δ as a function of the wave vector k. The relative devia-
tion between GPU and CPU in the case of WITHOUT_FT
is always less than 10−14, and decreases for increasing wave
vectors. A similar decreasing trend as a function of the wave
vectors is also visible for the WITH_FT algorithm, even
though the relative deviations at small wave vectors are
approximately 10−7. We also note that the relative uncer-
tainty shows an oscillatory trend, similar to the one visible
in the structure function, but with an opposite phase.
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de Zárate, F. Croccolo, Coupled nonequilibrium fluctua-
tions in a polymeric ternary mixture. Eur. Phys. J. E 42,
124 (2019). https://doi.org/10.1140/epje/i2019-11889-4

8. F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S.
Cannell, Use of dynamic schlieren interferometry to
study fluctuations during free diffusion. Appl. Opt.
45(10), 2166–2173 (2006). https://doi.org/10.1364/AO.
45.002166

9. F. Croccolo, D. Brogioli, Quantitative Fourier analysis
of schlieren masks: the transition from shadowgraph to
schlieren. App. Opt. 50, 3419 (2011). https://doi.org/
10.1364/AO.50.003419

10. R. Cerbino, V. Trappe, Differential dynamic microscopy:
probingwave vector dependent dynamics with a micro-
scope. Phys. Rev. Lett. (2008). https://doi.org/10.1103/
PhysRevLett.100.188102

11. D. Germain, M. Leocmach, T. Gibaud, Differential
dynamic microscopy to characterize Brownian motion
and bacteria motility. Am. J. Phys. 84(3), 202–210
(2016). https://doi.org/10.1119/1.4939516

12. R. Cerbino, P. Cicuta, Perspective: differential dynamic
microscopy extracts multi-scale activity in complex flu-
ids and biological systems. J. Chem. Phys. (2017).
https://doi.org/10.1063/1.5001027

13. F. Giavazzi, R. Cerbino, Digital Fourier microscopy for
soft matter dynamics. J. Opt. 16(8), 083001 (2014).
https://doi.org/10.1088/2040-8978/16/8/083001

14. P. Baaske, H. Bataller, M. Braibanti, M. Carpineti, R.
Cerbino, F. Croccolo, A. Donev, W. Köhler, J.M. Ortiz
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