Skip to main content
Log in

Rayleigh method adapted for the study of the optical response of natural photonic structures

  • Tips and Tricks
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

To study the electromagnetic response of natural structures that exhibit interesting optical properties, we developed a computational tool to solve the problem of electromagnetic scattering by a rough interface between two isotropic media, based on the Rayleigh method. The key aspect of the developed formalism is its capability of introducing the interface profile within the code by means of a digitalized image of the structure, which can be either obtained from an electron microscopy image or simply by design according to the complexity of the scattering surface. As application examples, we show the results obtained for surfaces taken directly from microscopy images of two different biological species. This approach constitutes a fundamental step in order to model the electromagnetic response of natural photonic structures.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

All the codes for reproducing the analyses in this article are available from the corresponding author upon reasonable request.

Notes

  1. The Dirac delta function in Eq. (7) is inside \(K(\alpha ',\alpha _0)\) (see Eqs. A.5 and A.7).

References

  1. A. Parker, J. Opt. A 2, R15–R28 (2000)

    Article  ADS  Google Scholar 

  2. M. Srinivasarao, Chem. Rev. 99, 1935–1962 (1999)

    Article  Google Scholar 

  3. P. Vukusic, J.R. Sambles, Nature 424, 852–855 (2003)

    Article  ADS  Google Scholar 

  4. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  5. S. Berthier, Iridescences, the Physical Colours of Insects (Springer, Berlin, 2007)

    Google Scholar 

  6. S.M. Doucet, M.G. Meadows, J. R. Soc. Interface 6, S115–S132 (2009)

    Article  Google Scholar 

  7. J.D. Forster, H. Noh, S.F. Liew, V. Saranathan, C.F. Schreck, L. Yang, J.-G. Park, R.O. Prum, S.G.J. Mochrie, C.S. O’Hern, H. Cao, E.R. Dufresne, Adv. Mater. 22, 2939–2944 (2010)

  8. A. Saito, Sci. Technol. Adv. Mater. 12, 064709 (2011)

    Article  Google Scholar 

  9. M. Iwata, M. Teshima, T. Seki, S. Yoshioka, Y. Takeoka, Adv. Mater. 29, 1605050 (2017)

    Article  Google Scholar 

  10. M. Xiao, Z. Hu, Z. Wang, Y. Li, A. Diaz-Tormo, N. Le-Thomas, B. Wang, N.C. Gianneschi, M.D. Shawkey, A. Dhinojwala, Sci. Adv. 3, e1701151 (2017)

    Article  ADS  Google Scholar 

  11. Y. Wang, H. Cui, Q. Zhao, X. Du, Matter 1, 1–13 (2019)

    Article  Google Scholar 

  12. A. McDougal, B. Miller, M. Singh, M. Kolle, J. Opt. 21, 073001 (2019)

    Article  ADS  Google Scholar 

  13. P. Vukusic, D.G. Stavenga, J. R. Soc. Interface 6, S133–S148 (2009)

    Google Scholar 

  14. L. Li, J. Opt. Soc. Am. A 10, 2581–2591 (1993)

    Article  ADS  Google Scholar 

  15. D.C. Skigin, R.A. Depine, Opt. Commun. 149, 117–126 (1998)

    Article  ADS  Google Scholar 

  16. M.G. Moharam, T.K. Gaylord, J. Opt. Soc. Am. A 71, 811–818 (1981)

    Article  ADS  Google Scholar 

  17. J. Chandezon, M. Dupuis, G. Cornet, D. Maystre, J. Opt. Soc. Am. 72, 839–846 (1982)

    Article  ADS  Google Scholar 

  18. R.A. Depine, M.E. Inchaussandague, J. Opt. Soc. Am. A 11, 173–180 (1994)

    Article  ADS  Google Scholar 

  19. A.A. Maradudin, T.R. Michel, A.R. McGurn, E.R. Mndez, Ann. Phys. 203, 255–307 (1990)

    Article  ADS  Google Scholar 

  20. G. Schmidt, B.H. Kleemann, J. Mod. Opt. 58, 407–423 (2011)

    Article  ADS  Google Scholar 

  21. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, London, 2005)

    MATH  Google Scholar 

  22. M. Kolle, Photonic Structures Inspired by Nature (Springer, Berlin, 2011)

    Book  Google Scholar 

  23. M.F. Su, I. El-Kady, D.A. Bader, S. Lin, Proceedings of the 33rd International Conference on Parallel Processing (ICPP), Montreal. (2004), p. 373–379

  24. A.E. Dolinko, D.C. Skigin, J. Opt. Soc. Am. A 30, 1746–1759 (2013)

    Article  ADS  Google Scholar 

  25. A.E. Dolinko, D.C. Skigin, M.E. Inchaussandague, C. Carmarn, Opt. Express 20, 15139–15148 (2012)

    Article  ADS  Google Scholar 

  26. M.E. Inchaussandague, D.C. Skigin, A.E. Dolinko, Appl. Opt. 56, 5112–5120 (2017)

    Article  ADS  Google Scholar 

  27. L. Rayleigh, Proc. R. Soc. Lond. Ser. A 79, 399 (1907)

    Article  ADS  Google Scholar 

  28. L. Kazandjian, Phys. Rev. E 54, 6802 (1996)

    Article  ADS  Google Scholar 

  29. A.V. Tishchenko, Opt. Express 17, 17102 (2009)

    Article  ADS  Google Scholar 

  30. A.V. Tishchenko, Opt. Photonics News 21(7), 17102 (2010)

    Article  Google Scholar 

  31. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  32. F. Toigo, A. Marvin, V. Celli, N.R. Hill, Phys. Rev. B 15(12), 5618 (1977)

    Article  ADS  Google Scholar 

  33. M. Lester, R.A. Depine, Opt. Commun. 127, 189 (1996)

    Article  ADS  Google Scholar 

  34. V. Grnhut, R.A. Depine, Eur. J. Phys. D 62, 227 (2011)

    Article  ADS  Google Scholar 

  35. V. Grnhut, R.A. Depine, Appl. Opt. 51, 3470 (2012)

    Article  ADS  Google Scholar 

  36. D.C. Skigin, R.A. Depine, Opt. Commun. 130, 307 (1996)

    Article  ADS  Google Scholar 

  37. D.C. Skigin, R.A. Depine, J. Mod. Opt. 44, 1023 (1997)

    Article  ADS  Google Scholar 

  38. M.E. Inchaussandague, D.C. Skigin, A. Tolivia, I. Fuertes Vila, V. Conforti, Proc. SPIE 9055, 905514 (2014)

    Article  Google Scholar 

  39. M.E. Inchaussandague, M.L. Gigli, D.C. Skigin, A. Tolivia, V. Conforti, Proc. SPIE 9429, 94290D (2015)

    Article  ADS  Google Scholar 

  40. A. Dolinko, C. Valencia, D.C. Skigin, M.E. Inchaussandague, A. Tolivia, V. Conforti, Proc. SPIE 9531, 953144 (2015)

    Article  Google Scholar 

  41. M.E. Inchaussandague, D.C. Skigin, A.E. Dolinko, Appl. Opt. 56, 5112 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge partial support from Universidad de Buenos Aires (UBACyT 20020150100028BA and 20020190100108BA) and from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 11220170100633CO).

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. D.C.S. and M.S.V. conceived the presented idea. M.S.V. developed the theory and performed the simulations. A.E.D. provided the validation results. D.C.S. supervised the findings of this work. All authors discussed the results and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Maria Sol Vidal.

Appendices

Appendix A

We give here the explicit expressions for the kernel functions of Eqs. (7) and (8).

$$\begin{aligned} K^r(\alpha ',\alpha )=M_{\alpha ,\alpha '}\;D[\alpha '-\alpha ,\beta _{\alpha ' }^{(2)}-\beta _{\alpha }^{(1)}], \end{aligned}$$
(A.1)
$$\begin{aligned} K^t(\alpha ',\alpha )=M_{\alpha ',\alpha }\;D[\alpha '-\alpha ,\beta _{\alpha }^{(2)}-\beta _{\alpha '}^{(1)}], \end{aligned}$$
(A.2)

where

$$\begin{aligned} M_{\alpha ,\alpha '}=\frac{\left( 1-\frac{\gamma _2}{\gamma _1}\right) \left( \alpha \alpha '+\beta _{\alpha ' }^{(2)}\beta _{\alpha }^{(1)}\right) +k_0^2\left( \frac{\gamma _2}{\gamma _1}\nu _1^2-\nu _2^2\right) }{\beta _{\alpha ' }^{(2)}-\beta _{\alpha }^{(1)}},\nonumber \\ \end{aligned}$$
(A.3)

and

$$\begin{aligned} D\left[ u,v \right] =\frac{1}{2\pi }\int \limits _{-\infty }^{+\infty }dxe^{-iux}e^{-ivg(x)}. \end{aligned}$$
(A.4)

\(D\left[ u,v \right] \) is the Fourier transform of \(e^{-ivg(x)}\). Taking into account the particular expression for g(x) given in Eq. (1), it can be shown by elementary calculations that:

$$\begin{aligned} D\left[ u,v \right] =\delta (u)-\frac{1}{\pi u}\sin \left( \frac{a}{2}u\right) +D'\left[ u,v \right] , \end{aligned}$$
(A.5)

where

$$\begin{aligned} D'\left[ u,v \right] =\frac{1}{2\pi }\int \limits _{-\frac{a}{2}}^{+\frac{a}{2}}dxe^{-iux}e^{-ivg(x)}. \end{aligned}$$
(A.6)

The inhomogeneity in Eq. (7) is

$$\begin{aligned} K(\alpha ',\alpha _0)=N_{\alpha _0,\alpha '}\;2\pi \;D \left[ \alpha '-\alpha _0,\beta _{\alpha ' }^{(2)}+\beta _{0 }^{(1)} \right] ,\quad \end{aligned}$$
(A.7)

where

$$\begin{aligned} N_{\alpha _0,\alpha '}=\frac{\left( 1-\frac{\gamma _2}{\gamma _1}\right) \left( \alpha '\alpha _0-\beta _{\alpha ' }^{(2)}\beta _{0 }^{(1)}\right) +k_0^2\left( \frac{\gamma _2}{\gamma _1}\nu _1^2-\nu _2^2\right) }{\beta _{\alpha ' }^{(2)}+\beta _{0 }^{(1)}}.\nonumber \\ \end{aligned}$$
(A.8)

Appendix B

Substituting \( R(\alpha )\) from Eq. (9) into Eq. (7), and taking into account the expression of Eq. (A.5) and that \( R^{(0)}=-N_{\alpha _0,\alpha _0}/M_{\alpha _0,\alpha _0}\), Eq. (13) is obtained. The expression of \(b_R(\alpha ')\) in the right-hand side of Eq. (13) is:

$$\begin{aligned}&b_R(\alpha ')=2\frac{\sin (\frac{a}{2}(\alpha ' -\alpha _0 ))}{\alpha ' -\alpha _0}\left( N_{\alpha _0, \alpha ' }+R^{(0)}M_{\alpha _0, \alpha ' } \right) \nonumber \\&-2\pi \Bigg (N_{\alpha _0, \alpha ' }D'\left[ \alpha ' -\alpha _0,\beta _{\alpha '}^{(2)}+\beta _{0}^{(1)} \right] \nonumber \\&+ R^{(0)}M_{\alpha _0, \alpha ' }D'\left[ \alpha ' -\alpha _0,\beta _{\alpha '}^{(2)}-\beta _{0}^{(1)} \right] \Bigg ). \end{aligned}$$
(B.1)

Analogously, substituting \(T(\alpha )\) from Eq. (10) into Eq. (8) and taking into account that \(T^{(0)}=-\frac{\gamma _2}{\gamma _1}2\beta _0^{(1)}/M_{\alpha _0,\alpha _0}\), Eq. (14) is obtained, where \(b_T(\alpha ')\) is given by:

$$\begin{aligned}&b_T(\alpha ')=-2\pi T^{(0)}M_{\alpha ',\alpha _0 }\Bigg \{ D'\left[ \alpha ' -\alpha _0,\beta _{0}^{(2)}-\beta _{\alpha '}^{(1)} \right] \nonumber \\&\quad -\frac{\sin (\frac{a}{2}(\alpha ' -\alpha _0 ))}{\pi (\alpha ' -\alpha _0)}\Bigg \}. \end{aligned}$$
(B.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, M.S., Dolinko, A.E. & Skigin, D.C. Rayleigh method adapted for the study of the optical response of natural photonic structures. Eur. Phys. J. E 44, 118 (2021). https://doi.org/10.1140/epje/s10189-021-00124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00124-8

Navigation