Skip to main content
Log in

The role of friction in statistics and scaling laws of avalanches

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigate statistics and scaling laws of avalanches in two-dimensional frictional particles by numerical simulations. We find that the critical exponent for avalanche size distributions is governed by microscopic friction between the particles in contact, where the exponent is larger and closer to mean-field predictions if the friction coefficient is finite. We reveal that microscopic “slips” between frictional particles induce numerous small avalanches which increase the slope, as well as the power-law exponent, of avalanche size distributions. We also analyze statistics and scaling laws of the avalanche duration and maximum stress drop rates, and examine power spectra of stress drop rates. Our numerical results suggest that the microscopic friction is a key ingredient of mean-field descriptions and plays a crucial role in avalanches observed in real materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author].

Notes

  1. The stress tensor is decomposed as \(\sigma _{\alpha \beta }=-L^{-2}\sum f_{ijn}n_{ij\alpha }r_{ij\beta }-L^{-2}\sum f_{ijt}t_{ij\alpha }r_{ij\beta }\), where \(n_{ij\alpha }\) (\(t_{ij\alpha }\)) is the \(\alpha \)-component of normal (tangential) unit vector. The average of the off-diagonal elements of the first term (on the right-hand-side) is \(\sigma _n\), whereas that of the second term is \(\sigma _t\).

References

  1. J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, UK, 1990)

    Book  MATH  Google Scholar 

  2. D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang, S.A. Ridout, B. Xu, G. Zhang, P.K. Morse, J.L. Barrat et al., Phys. Rev. Materials 4, 113609 (2020)

    Article  ADS  Google Scholar 

  3. M. Ozawa, L. Berthier, G. Biroli, G. Tarjus, Phys. Rev. Research 2, 023203 (2020)

    Article  ADS  Google Scholar 

  4. M. Singh, M. Ozawa, L. Berthier, Phys. Rev. Materials 4, 025603 (2020)

    Article  ADS  Google Scholar 

  5. M. Ozawa, L. Berthier, G. Biroli, A. Rosso, G. Tarjus, Proc. Natl. Acad. Sci. USA 115, 6656 (2018)

    Article  ADS  Google Scholar 

  6. J.T. Uhl, S. Pathak, D. Schorlemmer, X. Liu, R. Swindeman, B.A.W. Brinkman, M. LeBlanc, G. Tsekenis, N. Friedman, R. Behringer et al., Sci. Rep. 5, 16493 (2015)

    Article  ADS  Google Scholar 

  7. A. Nicolas, E.E. Ferrero, K. Martens, J.L. Barrat, Rev. Mod. Phys. 90, 045006 (2018)

    Article  ADS  Google Scholar 

  8. M. Henkel, H. Hinrichsen, S. Lübeck, Non-Equilibrium Phase Transitions, Volume I: Absorbing Phase Transitions (Springer Science+Business Media B.V., Dordrecht, The Netherlands, 2008)

  9. S.R. Nagel, Rev. Mod. Phys. 64, 321 (1992)

    Article  ADS  Google Scholar 

  10. D.S. Fisher, K. Dahmen, S. Ramanathan, Y. Ben-Zion, Phys. Rev. Lett. 78, 4885 (1997)

    Article  ADS  Google Scholar 

  11. J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001)

    Article  ADS  Google Scholar 

  12. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009)

    Article  ADS  Google Scholar 

  13. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Nat. Phys. 7, 554 (2011)

    Article  Google Scholar 

  14. N. Friedman, A.T. Jennings, G. Tsekenis, J.Y. Kim, M. Tao, J.T. Uhl, J.R. Greer, K.A. Dahmen, Phys. Rev. Lett. 109, 095507 (2012)

    Article  ADS  Google Scholar 

  15. D.V. Denisov, K.A. Lörincz, J.T. Uhl, K.A. Dahmen, P. Schall, Nature Commun. 7, 10641 (2015)

    Article  ADS  Google Scholar 

  16. D.A. Geller, R.E. Ecke, K.A. Dahmen, S. Backhaus, Phys. Rev. E 92, 060201(R) (2015)

    Article  ADS  Google Scholar 

  17. K.A. Murphy, K.A. Dahmen, H.M. Jaeger, Phys. Rev. X 9, 011014 (2019)

    Google Scholar 

  18. M.A. Sheikh, R.L. Weaver, K.A. Dahmen, Phys. Rev. Lett. 117, 261101 (2016)

    Article  ADS  Google Scholar 

  19. J. Antonaglia, W.J. Wright, X. Gu, R.R. Byer, T.C. Hufnagel, M. LeBlanc, J.T. Uhl, K.A. Dahmen, Phys. Rev. Lett. 112, 155501 (2014)

    Article  ADS  Google Scholar 

  20. A.A. Long, D.V. Denisov, P. Schall, T.C. Hufnagel, X. Gu, W.J. Wright, K.A. Dahmen, Granular Matter 21, 99 (2019)

    Article  Google Scholar 

  21. D.J. Durian, Phys. Rev. E 55, 1739 (1997)

    Article  ADS  Google Scholar 

  22. S. Tewari, D. Schiemann, D.J. Durian, C.M. Knobler, S.A. Langer, A.J. Liu, Phys. Rev. E 60, 4385 (1999)

    Article  ADS  Google Scholar 

  23. C. Heussinger, P. Chaudhuri, J.L. Barrat, Soft Matter 6, 3050 (2010)

    Article  ADS  Google Scholar 

  24. D. Zhang, K.A. Dahmen, M. Ostoja-Starzewski, Phys. Rev. E 95, 032902 (2017)

    Article  ADS  Google Scholar 

  25. K.M. Salerno, C. Maloney, M.O. Robbins, Phys. Rev. Lett. 109, 105703 (2012)

    Article  ADS  Google Scholar 

  26. K.M. Salerno, M.O. Robbins, Phys. Rev. E 88, 062206 (2013)

    Article  ADS  Google Scholar 

  27. K. Karimi, E.E. Ferrero, J.L. Barrat, Phys. Rev. E 95, 013003 (2017)

    Article  ADS  Google Scholar 

  28. M. Talamali, V. Petäjä, D. Vandembroucq, S. Roux, Phys. Rev. E 84, 016115 (2011)

    Article  ADS  Google Scholar 

  29. C. Liu, E.E. Ferrero, F. Puosi, J.L. Barrat, K. Martens, Phys. Rev. Lett. 116, 065501 (2016)

    Article  ADS  Google Scholar 

  30. J. Lin, E. Lerner, A. Rosso, M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 111, 14382 (2014)

    Article  ADS  Google Scholar 

  31. J. Lin, T. Gueudré, A. Rosso, M. Wyart, Phys. Rev. Lett. 115, 168001 (2015)

    Article  ADS  Google Scholar 

  32. E.E. Ferrero, E.A. Jagla, Phys. Rev. Lett. 123, 218002 (2019)

    Article  ADS  Google Scholar 

  33. E.E. Ferrero, E.A. Jagla, Soft Matter 15, 9041 (2019)

    Article  ADS  Google Scholar 

  34. P.D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, M.J. Alava, Phys. Rev. Lett. 112, 235501 (2014)

    Article  ADS  Google Scholar 

  35. J. Barés, D. Wang, D. Wang, T. Bertrand, C.S. O’Hern, R.P. Behringer, Phys. Rev. E 96, 052902 (2017)

    Article  ADS  Google Scholar 

  36. S. Karmakar, E. Lerner, I. Procaccia, Phys. Rev. E 82, 055103(R) (2010)

    Article  ADS  Google Scholar 

  37. E. Lerner, N.P. Bailey, J.C. Dyre, Phys. Rev. E 90, 052304 (2014)

    Article  ADS  Google Scholar 

  38. H.G.E. Hentschel, S. Karmakar, E. Lerner, I. Procaccia, Phys. Rev. Lett. 104, 025501 (2010)

    Article  ADS  Google Scholar 

  39. S. Karmakar, E. Lerner, I. Procaccia, J. Zylberg, Phys. Rev. E 82, 031301 (2010)

    Article  ADS  Google Scholar 

  40. S. Luding, J. Phys.: Condens. Matter 17, 2623 (2005)

    ADS  MathSciNet  Google Scholar 

  41. K. Saitoh, N. Oyama, F. Ogushi, S. Luding, Soft Matter 15, 3487 (2019)

    Article  ADS  Google Scholar 

  42. A.W. Lees, S.F. Edwards, J. Phys. C: Solid State Phys. 5, 1921 (1972)

    Article  ADS  Google Scholar 

  43. D. Vågberg, P. Olsson, S. Teitel, Phys. Rev. E 95, 052903 (2017)

    Article  ADS  Google Scholar 

  44. T. Hatano, C. Narteau, P. Shebalin, Sci. Rep. 5, 12280 (2014)

    Article  ADS  Google Scholar 

  45. K. Dahmen, D. Ertaş, Y. Ben-Zion, Phys. Rev. E 58, 1494 (1998)

    Article  ADS  Google Scholar 

  46. E. Aharonov, D. Sparks, Phys. Rev. E 60, 6890 (1999)

    Article  ADS  Google Scholar 

  47. J.C. Savage, J. Geophys. Res. 77, 3788 (1972)

    Article  ADS  Google Scholar 

  48. B. Shang, P. Guan, J.L. Barrat, Proc. Natl. Acad. Sci. U.S.A. 117, 86 (2020)

    Article  ADS  Google Scholar 

  49. D. Bi, J. Zhang, B. Chakraborty, R.P. Behringer, Nature 480, 355 (2011)

    Article  ADS  Google Scholar 

  50. M. Otsuki, H. Hayakawa, Phys. Rev. E 83, 051301 (2011)

    Article  ADS  Google Scholar 

  51. R. Seto, R. Mari, J.F. Morris, M.M. Denn, Phys. Rev. Lett. 111, 218301 (2013)

    Article  ADS  Google Scholar 

  52. M. Grob, C. Heussinger, A. Zippelius, Phys. Rev. E 89, 050201(R) (2014)

  53. M. Wyart, M.E. Cates, Phys. Rev. Lett. 112, 098302 (2014)

    Article  ADS  Google Scholar 

  54. R. Mari, R. Seto, J.F. Morris, M.M. Denn, Phys. Rev. E 91, 052302 (2013)

    Article  ADS  Google Scholar 

  55. M. Grob, A. Zippelius, C. Heussinger, Phys. Rev. E 93, 030901(R) (2016)

    Article  ADS  Google Scholar 

  56. S. Saw, M. Grob, A. Zippelius, C. Heussinger, Phys. Rev. E 101, 012602 (2020)

    Article  ADS  Google Scholar 

  57. A. Singh, S. Pednekar, J. Chun, M.M. Denn, J.F. Morris, Phys. Rev. Lett. 122, 098004 (2019)

    Article  ADS  Google Scholar 

  58. A. Singh, C. Ness, R. Seto, J.J. de Pablo, H.M. Jaeger, Phys. Rev. Lett. 124, 248005 (2020)

    Article  ADS  Google Scholar 

  59. M. van Hecke, J. Phys.: Condens. Matter 22, 033101 (2010)

    ADS  Google Scholar 

  60. A.J. Liu, S.R. Nagel, Annu. Rev. Condens. Matter Phys. 1, 347 (2010)

    Article  ADS  Google Scholar 

  61. P. Olsson, S. Teitel, Phys. Rev. Lett. 99, 178001 (2007)

    Article  ADS  Google Scholar 

  62. A. Tanguy, J.P. Wittmer, F. Leonforte, J.L. Barrat, Phys. Rev. B 66, 174205 (2002)

    Article  ADS  Google Scholar 

  63. F. Leonforte, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. B 70, 014203 (2004)

    Article  ADS  Google Scholar 

  64. F. Leonforte, R. Boissiere, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. B 72, 224206 (2005)

    Article  ADS  Google Scholar 

  65. F. Leonforte, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. Lett. 97, 055501 (2006)

    Article  ADS  Google Scholar 

  66. W.G. Ellenbroek, E. Somfai, M. van Hecke, W. van Saarloos, Phys. Rev. Lett. 97, 258001 (2006)

    Article  ADS  Google Scholar 

  67. W.G. Ellenbroek, M. van Hecke, W. van Saarloos, Phys. Rev. E 80, 061307 (2009)

    Article  ADS  Google Scholar 

  68. R.P. Behringer, D. Bi, B. Chakraborty, S. Henkes, R.R. Hartley, Phys. Rev. Lett. 101, 268301 (2008)

    Article  ADS  Google Scholar 

  69. R.A. White, K.A. Dahmen, Phys. Rev. Lett. 91, 085702 (2003)

    Article  ADS  Google Scholar 

  70. M. LeBlanc, A. Nawano, W.J. Wright, X. Gu, J.T. Uhl, K.A. Dahmen, Phys. Rev. E 94, 052135 (2016)

    Article  ADS  Google Scholar 

  71. B. Andreotti, J.L. Barrat, C. Heussinger, Phys. Rev. Lett. 109, 105901 (2012)

    Article  ADS  Google Scholar 

  72. E. Irani, P. Chaudhuri, C. Heussinger, Phys. Rev. Lett. 112, 188303 (2014)

    Article  ADS  Google Scholar 

  73. E. Irani, P. Chaudhuri, C. Heussinger, Phys. Rev. E 94, 052608 (2016)

    Article  ADS  Google Scholar 

  74. C. Goldenberg, A. Tanguy, J.L. Barrat, Euro. Phys. Lett. 80, 16003 (2007)

    Article  ADS  Google Scholar 

  75. B.P. Tighe, E. Woldhuis, J.J.C. Remmers, W. van Saarloos, M. van Hecke, Phys. Rev. Lett. 105, 088303 (2010)

    Article  ADS  Google Scholar 

  76. S. Mandal, V. Chikkadi, B. Nienhuis, D. Raabe, P. Schall, F. Varnik, Phys. Rev. E 88, 022129 (2013)

    Article  ADS  Google Scholar 

  77. O. Pouliquen, Phys. Rev. Lett. 93, 248001 (2004)

    Article  ADS  Google Scholar 

  78. B.A. DiDonna, T.C. Lubensky, Phys. Rev. E 72, 066619 (2005)

    Article  ADS  Google Scholar 

  79. C.E. Maloney, Phys. Rev. Lett. 97, 035503 (2006)

    Article  ADS  Google Scholar 

  80. C. Heussinger, J.L. Barrat, Phys. Rev. Lett. 102, 218303 (2009)

    Article  ADS  Google Scholar 

  81. T. Hatano, J. Phys.: Conf. Series 319, 012011 (2011)

    Google Scholar 

  82. D. Vågberg, P. Olsson, S. Teitel, Phys. Rev. Lett. 113, 148002 (2014)

  83. F. Radjai, S. Roux, Phys. Rev. Lett. 89, 064302 (2002)

    Article  ADS  Google Scholar 

  84. G. Combe, V. Richefeu, M. Stasiak, A.P.F. Atman, Phys. Rev. Lett. 115, 238301 (2015)

    Article  ADS  Google Scholar 

  85. K. Saitoh, H. Mizuno, Soft Matter 12, 1360 (2016)

    Article  ADS  Google Scholar 

  86. K. Saitoh, H. Mizuno, Phys. Rev. E 94, 022908 (2016)

    Article  ADS  Google Scholar 

  87. J. Chattoraj, A. Lemaître, Phys. Rev. Lett. 111, 066001 (2013)

    Article  ADS  Google Scholar 

  88. A. Lemaître, Phys. Rev. Lett. 113, 245702 (2014)

    Article  ADS  Google Scholar 

  89. A. Lemaître, Phys. Rev. E 96, 052101 (2017)

    Article  ADS  Google Scholar 

  90. K. Karimi, C.E. Maloney, Phys. Rev. E 92, 022208 (2015)

    Article  ADS  Google Scholar 

  91. A. Furukawa, K. Kim, S. Saito, H. Tanaka, Phys. Rev. Lett. 102, 016001 (2009)

    Article  ADS  Google Scholar 

  92. C.E. Maloney, M.O. Robbins, Phys. Rev. Lett. 102, 225502 (2009)

    Article  ADS  Google Scholar 

  93. V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, P. Schall, Phys. Rev. Lett. 107, 198303 (2011)

    Article  ADS  Google Scholar 

  94. V. Chikkadi, S. Mandal, B. Nienhuis, D. Raabe, F. Varnik, P. Schall, Euro. Phys. Lett. 100, 56001 (2012)

    Article  ADS  Google Scholar 

  95. P. Olsson, Phys. Rev. E 82, 031303 (2010)

    Article  ADS  Google Scholar 

  96. A. Nicolas, J. Rottler, J.L. Barrat, Euro. Phys. J. E 37, 50 (2014)

    Article  Google Scholar 

  97. K. Saitoh, H. Mizuno, Phys. Rev. E 96, 012903 (2017)

    Article  ADS  Google Scholar 

  98. N. Oyama, H. Mizuno, K. Saitoh, Phys. Rev. Lett. 122, 188004 (2019)

    Article  ADS  Google Scholar 

  99. K. Saitoh, R.K. Shrivastava, S. Luding, Phys. Rev. E 99, 012906 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Norihiro Oyama for fruitful discussions and helpful comments on the manuscript. This work was financially supported by JSPS KAKENHI Grant Numbers 18K13464, 20H01868, and 21H01006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniyasu Saitoh.

Appendices

Additional data

Fig. 8
figure 8

Double logarithmic plots of a the mean avalanche size \(\langle S\rangle \), b mean avalanche interval \(\langle \varDelta \gamma \rangle \), c mean avalanche duration \(\langle T\rangle \), and d mean maximum stress drop rate \(\langle M\rangle \) as functions of the friction coefficient \(\mu \). The symbols represent the system size N as listed in the legend of (a). The horizontal dashed lines indicate the values in the frictionless system, \(\mu =0\), while the shaded regions indicate the frictionless limit, \(\mu <\mu _c\sim 10^{-5}\)

In this appendix, we show additional data of our numerical simulations.

In Fig. 2, the avalanche size distributions P(S), distributions of the avalanche duration P(T), and power spectra of stress drop rates \(F(\omega )\) are arbitrarily shifted downward to prevent overlap. In Fig. 3c and d, the avalanche duration over the square root of avalanche size, \(T/S^{1/2}\), and the maximum stress drop rate over the square root of avalanche size, \(M/S^{1/2}\), are also shifted downward, respectively. Here, we present their raw data. Figure 7a–e display P(S), P(T), \(F(\omega )\), \(T/S^{1/2}\), and \(M/S^{1/2}\), respectively, where the symbols represent the friction coefficient \(\mu \) (as listed in (a)) and no data are shifted downward from the original positions. In addition, Fig. 7f plots the raw data of those in Fig. 6.

Finite size scaling in frictional systems

In this appendix, we explain how the microscopic friction alters the finite size scaling established for the frictionless system and discuss the frictionless limit.

Figure 8 displays (a) the mean avalanche size \(\langle S\rangle \) and (b) mean avalanche interval \(\langle \varDelta \gamma \rangle \) as functions of the friction coefficient \(\mu >0\), where we change the system size N as listed in the legend of (a). As can be seen, the system size dependence of \(\langle S\rangle \) and \(\langle \varDelta \gamma \rangle \) is sensitive to \(\mu \) so that the scaling relations established for the case of \(\mu =0\) (Eqs. (9) and (11)) are not applicable to \(\mu >0\). In this figure, we also show (c) the mean avalanche duration \(\langle T\rangle \) and (d) mean maximum stress drop rate \(\langle M\rangle \) as functions of \(\mu \). All the mean values significantly deviate from the frictionless cases (horizontal dashed lines) if the friction coefficient exceeds the critical value \(\mu _c\sim 10^{-5}\). Here, the critical value can be estimated as follows: In each time step, the strain increment \(\delta \gamma \) is applied to the system, where the tangential displacement between the particles in contact is roughly estimated as \(\mathrm{d}_0\delta \gamma \) with the mean particle diameter \(\mathrm{d}_0\). The particles “slip” if the static friction \(f_s\sim k_t \mathrm{d}_0\delta \gamma \) exceeds the threshold \(\mu f_n\sim \mu k_n\xi \), i.e. if \(k_t \mathrm{d}_0\delta \gamma >\mu k_n\xi \). Since \(k_n=k_t\) and \(\delta \gamma =10^{-7}\) in our MD simulations, this condition leads to \(\mu <\mu _c\equiv \mathrm{d}_0\delta \gamma /\xi \sim 10^{-5}\), where the overlap between the particles is roughly \(\xi \sim 10^{-2}\mathrm{d}_0\) [99]. Because the critical value \(\mu _c\) is infinitesimal and particles slip every time step, the system is almost frictionless in the limit, \(\mu <\mu _c\) (shaded regions).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitoh, K. The role of friction in statistics and scaling laws of avalanches. Eur. Phys. J. E 44, 85 (2021). https://doi.org/10.1140/epje/s10189-021-00089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00089-8

Navigation