Skip to main content
Log in

Nonlinear amplification of adhesion forces in interleaved books

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

It is nearly impossible to separate two interleaved phonebooks by pulling their spines. The very slight force exerted by the outer sheets of the assembly is amplified as the exponential of the square of the number of sheets, meaning that even a small number of sheets can create a highly resistant system. We present a systematic and detailed study of the influences of the normal external force and the geometrical parameters of the booklets on the assembly strength. We conclude that the paper-paper adhesion force between the two outer sheets, on the order of a few \(\hbox {mN}\),  is the one amplified by the interleaved-book system. The two-phonebook experiment—which has attracted the attention of students and the non-scientific public all around the world as an outstanding demonstration of the strength of friction—appears to also be a spectacular macroscopic manifestation of the microscopic coupling of friction and adhesion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.N.J. Persson, Sliding Friction: Physical Principles and Applications, 2nd edn. (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  2. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  3. B. Bhushan, J.N. Israelachvili, U. Landman, Nature 374, 607–616 (1995)

    Article  ADS  Google Scholar 

  4. D. Berman, S.A. Deshmukh, S.K.R.S. Sankaranarayanan, A. Erdemir, A.V. Sumant, Science 348, 1118–1122 (2015)

    Article  ADS  Google Scholar 

  5. P. Egberts, G.H. Han, X.Z. Liu, A.T.C. Johnson, R.W. Carpick, ACS Nano 8, 5010–5021 (2014)

    Article  Google Scholar 

  6. A. Ward, F. Hilitski, W. Schwenger, D. Welch, A.W.C. Lau, V. Vitelli, L. Mahadevan, Z. Dogic, Nat. Mater. 14, 583–588 (2015)

    Article  ADS  Google Scholar 

  7. S. Ghosal, Phys. Rev. Lett. 109, 248105 (2012)

    Article  ADS  Google Scholar 

  8. S. Ma, M. Scaraggi, C. Yan, X. Wang, S.N. Gorb, D. Dini, F. Zhou, Small 15, 1970005 (2019)

    Article  Google Scholar 

  9. H. Yoshizawa, Y.L. Chen, J. Israelachvili, J. Phys. Chem. 97, 4128–4140 (1993)

    Article  Google Scholar 

  10. J.N. Israelachvili, Y.-L. Chen, H. Yoshizawa, J. Adhesion Sci. Technol. 8, 1231–1249 (1994)

    Article  Google Scholar 

  11. A. Chateauminois, C. Fretigny, Eur. Phys. J. E 27, 221 (2008)

    Article  Google Scholar 

  12. B.-M.Z. Newby, M.K. Chaudhury, H.R. Brown, Science 269, 1407–1409 (1995)

    Article  ADS  Google Scholar 

  13. B.Z. Newby, M.K. Chaudhury, Langmuir 13, 1805–1809 (1997)

    Article  Google Scholar 

  14. S. Ponce, J. Bico, B. Roman, Soft Matter 11, 9281–9290 (2015)

    Article  ADS  Google Scholar 

  15. M.R. Begley, R.R. Collino, J.N. Israelachvili, R.M. McMeeking, J. Mech. Phys. Solids 61, 1265–1279 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Amouroux, J. Petit, L. Léger, Langmuir 17, 6510–6517 (2001)

    Article  Google Scholar 

  17. K. Autumn, A. Dittmore, D. Santos, M. Spenko, M. Cutkosky, J. Exp. Biol. 209, 3569–3579 (2006)

    Article  Google Scholar 

  18. Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. McGuiggan, K. Autumn, J. Israelachvili, Proc. Natl. Acad. Sci. 103, 19320–19325 (2006)

    Article  ADS  Google Scholar 

  19. J. Yu, S. Chary, S. Das, J. Tamelier, K.L. Turner, J.N. Israelachvili, Langmuir 28, 11527–11534 (2012)

    Article  Google Scholar 

  20. B. Zhao, N. Pesika, K. Rosenberg, Y. Tian, H. Zeng, P. McGuiggan, K. Autumn, J. Israelachvili, Langmuir 24, 1517–1524 (2008)

    Article  Google Scholar 

  21. W. Federle, D. Labonte, Philos. Trans. R. Soc. B Biol. Sci. 374, 20190199 (2019)

    Article  Google Scholar 

  22. V. Hayward, B. Armstrong, Experimental Robotics IV, vol. 250 (Springer, London, 2000), pp. 403–412

    Google Scholar 

  23. C. Richard, M. Cutkosky, in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), Washington, DC, USA, pp. 605–611 (2002)

  24. S. Herminghaus, Wet Granular Matter: A Truly Complex Fluid (World Scientific, Singapore, 2013)

    Book  Google Scholar 

  25. P.S. Raux, A.-L. Biance, Phys. Rev. Fluids 3, 014301 (2018)

    Article  ADS  Google Scholar 

  26. F. Restagno, C. Ursini, H. Gayvallet, I. Charlaix, Phys. Rev. E 66, 021304 (2002)

    Article  ADS  Google Scholar 

  27. K. Hristov, E. Armstrong-Carroll, M. Dunn, C. Pastore, Y. Gowayed, Text. Res. J. 74, 20–26 (2004)

    Article  Google Scholar 

  28. P.B. Warren, R.C. Ball, R.E. Goldstein, Phys. Rev. Lett. 120, 158001 (2018)

    Article  ADS  Google Scholar 

  29. S. Poincloux, M. Adda-Bedia, F. Lechenault, Phys. Rev. X 8, 021075 (2018)

    Google Scholar 

  30. D. Dumont, M. Houze, P. Rambach, T. Salez, S. Patinet, P. Damman, Phys. Rev. Lett. 120, 088001 (2018)

    Article  ADS  Google Scholar 

  31. K. Dalnoki-Veress, T. Salez, F. Restagno, Phys. Today 69, 74–75 (2016)

    Article  Google Scholar 

  32. H. Alarcón, T. Salez, C. Poulard, J.-F. Bloch, É. Raphaël, K. Dalnoki-Veress, F. Restagno, Phys. Rev. Lett. 116, 015502 (2016)

    Article  ADS  Google Scholar 

  33. O. Ben-David, J. Fineberg, Phys. Rev. Lett. 106 (2011)

  34. N. Fulleringer, J.-F. Bloch, Tribol. Int. 91, 94–98 (2015)

    Article  Google Scholar 

  35. N. Garoff, Ph.D. thesis, Institutionen for pappers-och massateknologi (2002)

  36. I. Etsion, M. Amit, J. Tribol. 115, 406 (1993)

    Article  Google Scholar 

  37. J. Crassous, L. Bocquet, S. Ciliberto, C. Laroche, Europhys. Lett. (EPL) 47, 562–567 (1999)

    Article  ADS  Google Scholar 

  38. L.D. Landau, A.M. Kosevich, E.M. Lifshitz, L.P. Pitaevskii, Theory of elasticity, Butterworth Heinemann Reprinted by Beijing World Publishing Corp., Oxford (1999)

  39. M. Khoury, G.E. Tourtollet, A. Schröder, Ultrasonics 37, 133–139 (1999)

    Article  Google Scholar 

  40. D.H. Kaelble, Trans. Soc. Rheol. 3, 161–180 (1959)

    Article  Google Scholar 

  41. M.-J. Dalbe, P.-P. Cortet, M. Ciccotti, L. Vanel, S. Santucci, Phys. Rev. Lett. 115, 128301 (2015)

    Article  ADS  Google Scholar 

  42. C. Poulard, F. Restagno, R. Weil, L. Léger, Soft Matter 7, 2543 (2011)

    Article  ADS  Google Scholar 

  43. J. Forsström, M. Eriksson, L. Wågberg, J. Adhesion Sci. Technol. 19, 783–798 (2005)

    Article  Google Scholar 

  44. A. Majumdar, B. Bhushan, J. Tribol. 113, 1–11 (1991)

    Article  Google Scholar 

  45. A. Rafsanjani, Y. Zhang, B. Liu, S.M. Rubinstein, K. Bertoldi, Sci. Robot. 3, 7555 (2018)

    Article  Google Scholar 

  46. A. Miriyev, K. Stack, H. Lipson, Nat. Commun. 8, 1–8 (2017)

    Article  Google Scholar 

  47. C. Baek, P. Johanns, T.G. Sano, P. Grandgeorge, P.M. Reis, J. Appl. Mech. 88, 024501 (2021)

    Article  ADS  Google Scholar 

  48. T.G. Sano, T. Yamaguchi, H. Wada, Phys. Rev. Lett. 118, 178001 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is our great pleasure to thank K. Dalnoki-Veress for continuous discussions about this problem. We also thank C. Aujoux for unpublished preliminary results, and Mason Porter for suggesting the name “Hercules number” via the Improbable Research blog. We thank D. Labonte for his careful review of our paper. We benefited from the financial support of the ANR (ANR-17-CE08-0008).

Author information

Authors and Affiliations

Authors

Contributions

R.T. did the experiments. All authors interpreted the results and developed the models. R.T., F.R. and C.P. wrote the manuscript and all the authors read and corrected the manuscript.

Corresponding author

Correspondence to Christophe Poulard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taub, R., Salez, T., Alarcòn, H. et al. Nonlinear amplification of adhesion forces in interleaved books. Eur. Phys. J. E 44, 71 (2021). https://doi.org/10.1140/epje/s10189-021-00068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00068-z

Navigation