Skip to main content
Log in

Transition to turbulence via flame patterns in viscoelastic Taylor–Couette flow

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Transition to inertio-elastic turbulence in Taylor–Couette flow with shear-thinning and viscoelastic polymer solutions is investigated when the rotation rate of the inner cylinder is increased and the outer cylinder is fixed. In two polymer solutions of PEO with elastic number \(E \in \left\{ 0.16 ; 0.30 \right\} \), the first instability of the circular Couette flow appears as spirals propagating in opposite directions along the axis of cylinders. Just above the onset of the spirals pattern, the localized solitons of the strong radial inflow called flame-like flow appear abruptly inside waves. The abrupt apparition of the flame-like flow is the signature of the subcritical transition to turbulence. The number of the flame-like flows follows a Gaussian distribution at given Ta number. The averaged number of the flame-like flow increases as the rotation rate is increased and it saturates in the inertio-elastic turbulence. The soliton of the strong radial inflow (flame-pattern) is created when it amplitude exceeds a critical value. The distribution of the critical amplitudes of the flame patterns follows a Gaussian law at given Ta number. The transition to turbulence is described by a mathematical model based on an error function of the probability to observe a strong inflow (flame-pattern). The statistical data of the critical amplitude and the probability to observe the flame patterns are used with the mathematical model in order to determine the stability curve of the transition to turbulence. The analysis of the transition to turbulence is completed by the characterization of the spatiotemporal properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A. Groisman, V. Steinberg, Nature (London) 405, 53 (2000)

    Article  ADS  Google Scholar 

  2. A. Groisman, V. Steinberg, New J. Phys 6, 29 (2004)

    Article  ADS  Google Scholar 

  3. R. Larson, E. Shaqfeh, S. Muller, J. Fluid Mech. 218, 573 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Muller, R. Larson, E. Shaqfeh, Rheol. Acta 28, 499 (1989)

    Article  Google Scholar 

  5. A. Groisman, V. Steinberg, Phys. Rev. Lett. 77, 1480 (1996)

    Article  ADS  Google Scholar 

  6. A. Groisman, V. Steinberg, Phys. Fluids 10, 2451 (1998)

    Article  ADS  Google Scholar 

  7. A. Groisman, V. Steinberg, Europhys. Lett. 43, 165 (1998)

    Article  ADS  Google Scholar 

  8. R. Bird, R. Armstrong, O. Hassaguer, Dynamics of Polymer Liquids, vol. 1 (Wiley, New York, 1987)

    Google Scholar 

  9. D.V. Boger, A highly elastic constant-viscosity fluid. J. Non-Newtonian Flui. Mech. 3(1), 87 (1977)

    Article  Google Scholar 

  10. C.S. Dutcher, S.J. Muller, J. Rheo. 55, 1271 (2011)

    Article  ADS  Google Scholar 

  11. T. Lacassagne, N. Cagney, J.J.J. Gillissen, S. Balabani, Phys. Rev. Fluids 5 (2020)

  12. O. Crumeyrolle, I. Mutabazi, M. Grisel, Phys. Fluids 14, 1681 (2002)

    Article  ADS  Google Scholar 

  13. M. Denn, J. Roisman, AIChE J. 15, 454 (1969)

    Article  Google Scholar 

  14. O. Crumeyrolle, N. Latrache, A. Ezersky, I. Mutabazi, Mech. Ind. 4(4), 397–409 (2003)

    Google Scholar 

  15. O. Crumeyrolle, N. Latrache, A. Ezersky, I. Mutabazi, J. Phys. Conf. Ser. 14, 78–93 (2005)

    Article  ADS  Google Scholar 

  16. N. Latrache, O. Crumeyrolle, N. Abcha, I. Mutabazi, J. Phys. Conf. Ser. 137 (2008)

  17. N. Latrache, O. Crumeyrolle, I. Mutabazi, Phys. Rev. E 86 (2012)

  18. N. Latrache, N. Abcha, O. Crumeyrolle, I. Mutabazi, Phys. Rev. E 93 (2016)

  19. A. Groisman, V. Steinberg, Phys. Rev. Lett. 78(8), 1460 (1997)

    Article  ADS  Google Scholar 

  20. B. Martinez-Arias, J. Peixinho, J. Non-Newtonian Fluid Mech. 247, 221–228 (2017)

    Article  MathSciNet  Google Scholar 

  21. B. Baumert, S. Muller, Phys. Fluids 9, 566–586 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  22. B. Baumert, S. Muller, J. Non-Newtonian Fluid Mech. 83, 33–69 (1999)

    Article  Google Scholar 

  23. N. Liu, B. Khomami, J. Fluid Mech. 737, R4 (2013)

  24. M. Doi, S. Edwards, The Theory of Polymer Dynamics (Oxford Science Publications, Oxford, 1994)

    Google Scholar 

  25. P. Manneville, J. Phys. 70, 6 (2008)

    Google Scholar 

  26. L. Trefethen, A. Trefethen, S. Reddy, T. Driscoll, Science 261, 578 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Chapman, J. Fluid Mech. 451, 35 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Waleffe, J. Wang, IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions (Springer, Berlin, 2005), pp. 85–106

  29. G. Kreiss, A. Lundbladh, D. Henningson, J. Fluid Mech. 270, 175 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  30. B. Dubrulle, S.V. Nazarenko, Europhys. Lett. 27, 129–134 (1994)

    Article  ADS  Google Scholar 

  31. P. Manneville, M. Lagha, Proceedings of the Euromech Fluid Mechanics Conference 6 Stockholm June 26–30, (2006) 207

  32. F. Waleffe, Phys. Fluids 7, 3060–3066 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  33. O. Dauchot, F. Daviaud, Phys. Fluids. 7, 335–352 (1995)

    Article  ADS  Google Scholar 

  34. J. Philip, A. Svizher, J. Cohen, Phys. Rev. Lett. 98 (2007)

  35. B. Hof, A. Juel, T. Mullin, Phys. Rev. Lett. 91 (2003)

  36. J. Peixinho, T. Mullin, J. Fluid Mech. 582, 169–178 (2007)

    Article  ADS  Google Scholar 

  37. P. Le Gal, Y. Tasaka, J. Nagao, A. Cros, K. Yamaguchi, J. Eng. Math. 57, 289–302 (2007)

    Article  Google Scholar 

  38. G. Lemoult, J.-L. Aider, J.E. Wesfreid, Phys. Rev. E 85, 025303(R) (2012)

    Article  ADS  Google Scholar 

  39. K.C. Tam, C. Tiu, Steady and dynamic shear properties of aqueous polymer solutions. J. Rheo. 33, 257–280 (1989)

    Article  ADS  Google Scholar 

  40. D. Vlassopoulos, W.R. Schowalter, J. Rheo. 38, 1427 (1994)

    Article  ADS  Google Scholar 

  41. H. Pingulkar, J. Peixinho, O. Crumeyrolle, Phys. Rev. Fluids 5 (2020)

  42. C.S. Dutcher, S.J. Muller, J. Fluid Mech. 641, 85–113 (2009)

    Article  ADS  Google Scholar 

  43. M.A. Dominguez-Lerma, G. Ahlers, D.S. Cannell, Effects of Kalliroscope flow visualization particles on rotating Couette–Taylor flow. Phys Fluids 28, 1204 (1985)

    Article  ADS  Google Scholar 

  44. J. Noir, Ecoulement d’un fluide dans une cavité en précession: approches numérique et expérimentale. Thèse de doctorat. Université de Grenoble 1 (2000)

  45. N. Abcha, N. Latrache, F. Dumouchel, I. Mutabazi, Exp. Fluids 45, 85 (2008)

    Article  Google Scholar 

  46. I. Mutabazi, N. Abcha, O. Crumeyrolle, and A. Ezersky, Application of the particle image velocimetry to the Couette-Taylor flow, in The PIV Characteristics, Limits and Possible Applications, edited by G. Cavazzini (InTech, Rijeka, 2012), Chap. 7, pp. 177–202

  47. B. Van Ruymbeke, N. Latrache, C. Gabillet, C. Colin, Phys. Rev. Fluids 5 (2020)

  48. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  49. A.C. Newell, Solitons in Mathematics and Physics (Society for Industrial and Applied Mathematics, Philadelphia, 1985)

    Book  MATH  Google Scholar 

  50. S. Fauve, O. Thual, Phys. Rev. Lett. 64, 282 (1990)

    Article  ADS  Google Scholar 

  51. F. Kelai, Etude expérimentale des instabilités viscoélastiques dans le système de Taylor-Couette (Université du Havre, Thèse de Doctorat, 2011)

  52. Y. Pomeau, Phys. D (Amsterdam, Neth.) 23, 3 (1986)

  53. D. Barkley, Phys. Rev. E 84 (2011)

  54. H. Hinrichsen, Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  55. K.A. Takeuchi, M. Kuroda, H. Chaté, M. Sano, Phys. Rev. Lett. 99 (2007)

  56. G. Lemoult, L. Shi, K. Avila, S.V. Jalikop, M. Avila, B. Hof, Nat. Phys. 12, 254–258 (2016)

    Article  Google Scholar 

  57. M. Sano, K. Tamai, Nat. Phys. 12, 249–253 (2016)

    Article  Google Scholar 

  58. M. Chantry, L.S. Tuckerman, D. Barkley, J. Fluid Mech. 824, R1 (2017)

    Article  ADS  Google Scholar 

  59. K. Avila, B. Hof, Entropy 23, 58 (2021)

    Article  ADS  Google Scholar 

  60. S. Bottin, H. Chaté, Eur. Phys. J. B 6, 143–155 (1998)

    Article  ADS  Google Scholar 

  61. S. Bottin, F. Daviaud, P. Manneville, O. Dauchot, Europhys. Lett. 43, 171–176 (1998)

    Article  ADS  Google Scholar 

  62. Y. Duguet, P. Schlatter, D.S. Henningson, J. Fluid Mech. 650, 119–129 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported partly by the Région Normandie and FEDER through the BIOENGINE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Latrache.

Ethics declarations

Author contribution statement

NL and IM have performed the experiments, analysed the data, and written themselves the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latrache, N., Mutabazi, I. Transition to turbulence via flame patterns in viscoelastic Taylor–Couette flow. Eur. Phys. J. E 44, 63 (2021). https://doi.org/10.1140/epje/s10189-021-00067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00067-0

Navigation