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Abstract Bacteria can chemotactically migrate up attractant gradients by controlling run-and-tumble
motility patterns. In addition to this well-known chemotactic behaviour, several soil and marine bacte-
rial species perform chemokinesis; they adjust their swimming speed according to the local concentration
of chemoeffector, with higher speed at higher concentration. A field of attractant then induces a spatially
varying swimming speed, which results in a drift towards lower attractant concentrations—contrary to the
drift created by chemotaxis. Here, to explore the biological benefits of chemokinesis and investigate its
impact on the chemotactic response, we extend a Keller—Segel-type model to include chemokinesis. We
apply the model to predict the dynamics of bacterial populations capable of chemokinesis and chemotaxis
in chemoeffector fields inspired by microfluidic and agar plate migration assays. We find that chemokinesis
combined with chemotaxis not only may enhance the population response with respect to pure chemo-
taxis, but also modifies it qualitatively. We conclude presenting predictions for bacteria around dynamic
finite-size nutrient sources, simulating, e.g. a marine particle or a root. We show that chemokinesis can

reduce the measuring bias that is created by a decaying attractant gradient.

1 Introduction

Many bacteria are able to swim by rotating helical flag-
ella distributed on their cell body, and control their
swimming pattern by modulating the speed or direc-
tion of rotation of their flagellar motors. For example,
in the model run-and-tumble motion of Escherichia coli
[1], a bacterium swims approximately straight in a ‘run’
by rotating its flagella in a bundle. When some flag-
ella change their rotation direction, the bundle comes
apart and the cell randomly changes direction in a ‘tum-
ble’. In the absence of external bias, this microscopic
pattern resembles a random walk, and leads to macro-
scopic diffusion of a bacterial population. In the pres-
ence of a chemical gradient, the random walk is biased,
a response known as chemotaxis. As shown in Fig. la,
a bacterium achieves the biased motion up a gradient
of attractant by varying the frequency of tumbles in its
random walk; if the bacterium moves up the gradient,
the tumbling rate a decreases and, thus the run length
increases, while the swimming speed remains constant.

The run-and-tumble model was originally introduced
for enteric bacteria such as E. coli and Salmonella
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typhimurium [2,3], which commonly live in nutrient-
rich environments, such as the gut. Marine and soil
bacteria, however, often experience heterogeneous and
nutrient-scarce environments, and have been found to
display different motility patterns. For example, several
species living in these harsher environments respond
to higher concentrations of attractant by increasing
their speed [4-6]. This response, known as ‘chemoki-
nesis’, modifies the swimming speed in response to the
local chemical concentration without affecting the tum-
bling rate, as shown in Fig. 1b. A positive chemokinetic
response leads to a higher swimming speed at higher
attractant concentrations, whereas a negative response
lowers the speed at those concentrations. The strength
of positive chemokinetic response can be defined as rel-
ative increase in swimming speed over the speed in the
absence of chemokinetic effector. A wide range of the
chemokinetic response strength has been reported, even
for a single species. The responses have been found
to vary for the symbiotic soil bacteria Sinorhizobium
meliloti and Azospirillum basilense from 7.5 to 35%
[7-9] and 40 to 77% [10], respectively; 7.5 to 73% for
the soil and freshwater purple bacterium Rhodobacter
sphaeroides [11,12]; 26 to 53% for the enterobacterium
E. coli [13]; 48% [5] or 6 to 64% [14] for the marine
pathogen Vibrio coralliilyticus. The marine bacterium
V.alginolyticus showed an increase of up to 80% upon
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stimulation with glucose in [15]. However, to the best
of our knowledge, the pure chemokinetic speed increase
as a function of attractant concentration has not been
systematically measured for any of these species.

While the role of chemokinesis has been studied
extensively in Paramecium spp. and other protozoa
[16-19], the biological significance of the chemokinetic
response of marine and soil bacteria has yet to be fully
elucidated. Based on the environment that chemoki-
netic bacteria have been found in, (positive) chemoki-
nesis might be beneficial in heterogeneous environ-
ments with scarce sources of nutrients (attractants).
For example, alga-sized microbeads coated with various
amino acids were used to study the response of marine
bacteria to point-like sources of attractants [4]. All
marine bacteria studied were observed to accumulate
in bands around the point-like sources while display-
ing a chemokinetic response. Furthermore, chemokine-
sis could allow marine bacteria to track algae, help-
ing to foster symbioses with these microorganisms, as
well as permitting to respond quickly to short bursts
of nutrients, such as those generated from lysing algae
[20]. Another example of a chemokinetic marine bac-
terium is the coral pathogen V. coralliilyticus. Microflu-
idic experiments on this pathogenic bacterium in com-
bination with mathematical modelling have suggested
that the maximum accumulation in response to chemi-
cal cues produced by heat-stressed coral hosts is larger
and is reached faster than in the absence of chemokine-
sis [,14]. As heat-stressed corals are more susceptible
to pathogens, chemokinesis could be a crucial evolu-
tionary advantage in oceans heating up due to climate
change. In fact, the chemokinetic response was shown
to be even stronger at elevated temperatures increasing
from 6% at 20°C to 64% at 30°C [14].

Recent interest in chemokinesis has also been sparked
by synthetic microswimmers, such as Janus particles.
Janus particles are synthetic colloids in a bath of fuel
(e.g. HoO2) that propel due to an asymmetric chemi-
cal reaction on their surface [21]. These particles show
a positive chemokinetic response since their swimming
speed increases with increasing fuel concentration [22],
and therefore accumulate in areas of lower fuel concen-
tration.

To date, theoretical work on the combination of
positive chemokinesis and chemotaxis has focussed on
single-cell level using agent-based models [5,15,23]. The
chemokinetic response of the marine pathogen V. coral-
litlyticus has been modelled as a step increase in swim-
ming speed beyond a threshold attractant concentra-
tion [5]. This model was used to analyse the chemo-
tactic response to a transient attractant gradient in
a microfluidic device after an initial release of attrac-
tant. The chemotactic index (i.e. the enhancement in
cell concentration over a control region) suggests that
chemokinesis enables a stronger and faster response.
This model has been further adapted to include speed
dependent changes in the probability of flicking and
reorientation frequency of V. alginolyticus [15,24]. In
this particular case, the speed induced changes in motil-
ity pattern are responsible for a significant part of the
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Fig. 1 Chemotaxis versus chemokinesis: a Chemotaxis is
the biased movement of bacteria up a chemical gradient of
attractant by reducing the tumbling rate a and, thereby
increasing the length of runs in a favourable direction. b
Positive chemokinesis leads to an increase in swimming
speed v in response to an increase in the local attractant
concentration

chemotaxis improvement as shown by the agent-based
model in [15].

In this work, we use a continuum model to study the
spatio-temporal dynamics of bacterial populations with
chemokinetic and chemotactic responses. We incorpo-
rate chemokinesis into the standard Keller-Segel model
for chemotaxis by deriving the model from microscopic
run and tumble dynamics. The model is then used to
obtain analytical conditions for chemokinetic drift, and
solved numerically for three different example attrac-
tant distributions that are inspired by existing experi-
mental systems.

2 Model

We derive a model for chemotaxis in combination with
positive chemokinesis by considering a one-dimensional
system in which a cell can move either to the right
or left with speed v. In this system, a right (left)
moving particle changes direction with rate ar (ar).
Following previous approaches [25,26], the one-particle
probability density for bacteria evolves according to

0b/Ot = —0J/0z, and the bacterial flux J can be
derived as
J(x)=—-D (x)@ + V()b (1)
B o
2
with  Dy(z) = ;La Vie)=Vi+Vy, (2

where ar + ap = 2«, and where we have defined the
chemokinetic

v Ov
Vo= 2 3)

and chemotactic
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drift speeds, respectively.

We will now connect the bacterial flux (1) to the
commonly used Keller-Segel model of chemotaxis,
adapted to the description of chemokinetic populations
in dynamic environments.

2.1 Chemotaxis

For chemotactic populations, the drift-diffusion flux (1)
is coupled to a chemoattractant density field ¢ via
the chemotactic drift speed, given by Eq. (4). In the
standard Keller—Segel model, it is phenomenologically
asserted that this chemotactic drift speed is propor-
tional to the change in the chemical attractant in space,
Vi = xVfy, where x is the chemotactic sensitivity
parameter and fy is a function of ¢ that ensures that the
chemotactic drift is biased towards higher attractant
concentrations [27]. This definition of the chemotactic
drift speed assumes that the chemical attractant pro-
file changes in space but not in time. However, as men-
tioned, known chemokinetic bacteria inhabit dynamic
environments, such as in the ocean or soil. As pointed
out by Hein et al [28], the effective gradient perceived by
a bacterium changes in a temporally varying attractant
profile depending on the direction of its run. Consider
a source of attractant at one point of space, and the
associated negative gradients of concentration as one
gets away from it. If these gradients are steady in time,
for example as in a microfluidic setting, a bacterium
exploiting the attractant landscape will correctly detect
the gradient and swim towards the source, as in stan-
dard chemotaxis. However, if the source corresponds to
a single point-like release of attractant, and the con-
centration at the source position also decays due to dif-
fusion, a bacterium travelling towards the source per-
ceives a smaller increase (or even a decrease) in concen-
tration compared to the steady case. On the other hand,
a bacterium moving away from the source perceives a
decrease, which is reduced in magnitude compared to
the steady case. We show in “Appendix A” how this
influences the mean run length of a bacterium, and, in
light of this, modify the chemotactic drift speed to

Vx =X (vfx + iatfx> ) (5)

where we see that the presence of a temporally increas-
ing (decreasing) gradient increases (decreases) the
chemotactic drift speed. Further, we note that the per-
turbation to the chemotactic drift speed is smaller the
larger the value of the swimming speed. For the chemo-
tactic function f,, we may choose, for example [29],

c(x,t)
=— 6
fX C(l’,t) + kx ( )
Following [30], using relationship (4) for the chemo-
tactic speed, the microscopic swimming parameters v

Page 3 of 13 32

and « can be related to the macroscopic parameter x
(see “Appendix A” for details) as

v

where 3 is constant dependent on the chemotactic
response (again, see “Appendix A” for details).

2.2 Chemokinesis

In this section, we consider how chemokinesis can be
modelled. We can modify Eq. (7) to include chemoki-
nesis (a spatially varying swimming speed) to give

x(z) = Xov(vxg)Q, (8)
0

in which the subscript refers to the parameters in the
absence of chemokinesis. (The interested reader can
find a detailed derivation in “Appendix A”.) Here we
assumed that the swimming speed is constant during a
run.

In addition to modifying the chemotactic drift y, the
spatially varying swimming speed of chemokinetic bac-
teria causes an additional chemokinetic drift to arise
with a speed given by Eq. (3). When acting alone, this
drift drives the cells towards regions of lower speed [25].

Next we consider how to quantify the chemoki-
netic coupling between speed and local concentration
of attractant. We need to make assumptions about
the relationship between speed and attractant concen-
tration, as experimental studies have not been car-
ried out to provide this. Firstly, we assume that cells
swim at a base-level speed, vy. Secondly, we reason-
ably posit that chemokinesis monotonically increases
the swimming speed up to a maximum speed denoted
as vg +v.. The dynamics between these limits are given
by an unknown function characterizing the chemoki-
netic response. In the following, we choose a Hill-type
equation

c(x)™

T ¥

v(x) = v + ve
to approximate the chemokinetic response. The Hill
parameter n allows us to introduce an inflection point
and change the gradient dv/dec. As shown in Fig. 2, the
speed increases monotonically with increasing attrac-
tant concentrations ¢ for all n and v. > 0, where the
half-maximum speed is reached at the attractant con-
centration k.. For any n, v = vy + k./2 at ¢ = k. as
all functions covered by Eq. (9) have the same half-
saturation constant. Note that upon setting n = 1, one
recovers a Michaelis-Menten-type response; for n — oo,
Eq. (9) approaches a step function, which has been used
previously to approximate the chemokinetic response
[5,15].

Finally, in situations where bacterial growth cannot
be ignored (e.g. migration across agar plates considered
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Fig. 2 Chemokinetic response function. The swimming
speed increases from a reference speed, vy, by at most
ve, depending on the local concentration of the attractant
according to a Hill-type function. The parameter n deter-
mines the strength of the gradient at the half-saturation
concentration, k.

in Sect. 3.2), bacteria are also assumed to undergo logis-
tic growth, which comprises growth and death terms
[29]. We note, however, that the chemoeffectors elic-
iting chemotaxis and chemokinesis need not in general
be metabolizable nutrients that induce growth. The full
model equations for the chemical attractant field and
the chemotactic and chemokinetic bacterial population
field, therefore, are

Oc d%¢ b
- Dc@ - kgg(c)? (10a)
ob aJ b
%= 5y + kgg(c)b (1 — kb) (10b)
v20b v Ov 1
(10c)

where k, is the maximum growth rate, Y is the bac-
terial yield, and k; is the carrying capacity. Further-
more, g(c) is chosen as a Monod-type growth function
g(c) = ¢/(c+ ks) with the half-saturation constant k.
Note that x(z) is given by Eq. (8), fy by Eq. (6) and
v(z) by Eq. (9).

Let us summarize the effects of chemokinesis in our
model. A spatially varying speed affects all three terms
of the bacterial flux J in Eq. (10c) as: (i) there are
regions with a higher diffusivity since D, ~ v? (first
term); (ii) it introduces a drift where dv/dz # 0 (second
term); and (iii) there are regions with a larger chemo-
tactic drift as xy ~ v? (third term).

2.3 Non-dimensionalization

The system of partial differential equations (10) is
non-dimensionalized using the characteristic time and
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length scales ty = kg_l and xg = 4 /tng, where the bac-

terial diffusivity is DY = v2a~!. We rescale the attrac-

tant and bacterial densities by their respective initial
densities, ¢y and by. The system of PDEs in dimension-
less form thus reads

oC C
~—— =NV?’C-HB——— 11
ar ~VVC C+Ks (11a)
OB C
— = — B—(1—-B 11
or = VB, (1P (1)
J=-V(X)’VB +ViB +V, B (11c)
o nnwncnfl
Vi = V(X)i((]n T (11d)
80K ¢ aC
Vy =V(X)? —
=V e R, (Yo sy ar)
(11e)

with non-dimensional parameters B = b/by, C' = ¢/cp,
N = D./Dj, H = by/(Yco), Ks = ks/co, 1 = ve/vo,
w = ke/co, 0o = x0/ Dy, ¢ = vo/(axe) and K,, = ky/co,
and non-dimensional time T = t/ty and space X =
x/xg. The non-dimensional speed function in Eq. (11) is

n

V(X) (12)

= ]_ + —_,
Ten + wn

where 7 is the maximum increase in swimming speed, w
is the attractant concentration at which the half maxi-
mum speed increase is reached, and n is the Hill param-
eter. Note that w corresponds to the inflection point
of Eq. (12). The chemokinetic response is positive for
n > 0.

Finally, the model is extended to the 2D axisymmet-
ric case by introducing polar coordinates as

0B
9*B 10B
2 —_— [
V‘B = IRz + ROR (13b)

and the equivalent equations for the chemical field,
C. The details of the numerical solution and simulations
of the model are described in “Appendix B”, including
a summary of parameters used. The parameters for the
results presented in the main text were chosen to best
illustrate the chemokinetic effect (see “Appendix B” for
a discussion of parameter values and the Supplemen-
tary Information for further simulations with different
parameter sets, including n). In Sect. 3, we will present
the simulation results for three different types of attrac-
tant gradient.

2.4 Condition for dominant chemokinetic drift

Before solving the extended Keller—Segel model numer-
ically, we can use Eq. (11) to analytically derive a con-
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dition on the relative importance of chemokinetic and
chemotactic contributions to the drift of the bacterial
population. The drift due to a spatially varying swim-
ming speed causes cells to accumulate in regions where
they have low speeds. For i > 0, by construction of the
velocity function (12), the speed is low at low attrac-
tant concentrations. The chemotactic drift, on the other
hand, is directed towards higher attractant concentra-
tions by virtue of Eq. (6). Hence, the bacterial density
is governed by two competing drifts, as can be seen
from the opposing signs in Egs. (11d) and (11e). If the
chemokinetic drift is larger than the chemotactic drift
for a large part of the spatial domain, this could lead to
accumulation at low attractant concentrations, instead
of the biologically desirable accumulation at high con-
centrations. Assuming a stationary and linear attrac-
tant profile (i.e. 9C/9T = 0 and 9C/0X = const), we
have from Egs. (11d) and (11e) that the chemokinetic
drift is larger than the chemotactic drift if

nnw"
(Cn + wn)Z

S0,

yolentt s X
(C+ Ky)?

VX €Q, (14)

where (Q is the spatial domain. In the case of a linear
attractant profile, we know from Eq. (12) (and Fig. 2)
that the gradient 9V/9C is maximum close to the half-
saturation constant w. Thus, we evaluate condition (14)
with C' = w, which yields the condition

4(50WKX 1 1 . o

If the Hill parameter n exceeds this threshold, the
chemokinetic drift is predicted to be larger than the
chemotactic drift at the attractant concentration C* =
w for n > 0. Note that, for a step function, condi-
tion (15) is always met at the threshold concentration
C* = w since n — oo. Conversely, if n < 0 (i.e. mod-
elling a negative chemokinetic response), condition (15)
will never be met as the chemotactic and chemokinetic
drift have the same direction (chemokinesis in this case
is stabilizing).

3 Results

3.1 Steady linear attractant profile

The full model Eq. (11) includes the effect of growth
and consumption as well as chemotaxis and chemoki-
nesis. Thus, any change in the spatial distribution of the
bacterial population due to chemotaxis and chemokine-
sis will feed back onto the attractant distribution due
to consumption by the bacteria. In order to identify the
influence of chemokinesis without such additional com-
plications, we first solve the model for a steady attrac-
tant gradient, i.e. 9C' /0T = 0. We furthermore assume
a linear profile such that 9C/0X = const and ignore
consumption, and thus population growth. This situ-
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Fig. 3 Chemokinesis in steady linear attractant profile.
Bacterial response (bottom row) to a fixed linear attractant
profile (top row) using pure chemotaxis (blue curve) versus
chemotaxis with chemokinesis (orange curve) for three time
points. Note the changing range of the y-axis in the bottom
row. The initial bacterial profile is indicated by the grey line.
The position at which C' = w is highlighted by a dotted red
line. Parameters H = 0, N = 0, K, = 0.53, §o = 50, n =
2, w=02,n=5T=1,917

ation might be achieved experimentally in microfluidic
devices [31], where the gradient may be fixed and bacte-
rial growth can be neglected on experimental timescales
short compared to growth timescales ~ kg_l.

Figure 3 compares the response of a purely chemo-
tactic population to the response of a chemotactic—

chemokinetic population. Chemokinesis leads to a stronger

and faster accumulation than in the purely chemotac-
tic case. At the critical concentration, C' = w, how-
ever, the chemokinetic drift holds back a subset of the
population because it is directed towards lower attrac-
tant concentrations as described in Sect. 2.4. This can
be seen in the form of an accumulation of cells at low
attractant concentrations. As the chemotactic sensitiv-
ity parameter, &g, is large in this simulation, the pop-
ulation subset overcomes the drift and accumulates at
high attractant concentrations at long times. However,
if condition (15) is fulfilled, the chemokinetic drift is
larger than the chemotactic drift. Thus, there is a sub-
population driven to small attractant concentrations by
chemokinesis. The effect of varying the Hill parameter
n in Eq. (12) is shown in Fig. 4. For the parameters
chosen in Fig. 3, condition (15) is met for n > 39.78.
In experiments, this would require observing the tran-
sient bacterial concentration profiles in addition to the
commonly reported steady-state profiles.

As the attractant concentration is fixed, we can deter-
mine a steady-state for the bacterial population, i.e. by
setting O0B/9T = 0J/0X = 0. Due to the homogeneous
Neumann boundary conditions of the problem, we have
J =0in Eq. (11), which yields the differential equation
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Fig. 4 Effect of Hill parameter on chemokinesis in steady
linear attractant profile. Chemotactic—chemokinetic bacte-
rial response to a fixed linear attractant profile at 7" = 0.5
(same constant attractant profile as in Fig. 3). The Hill
parameter n in Eq. (12) and, thus, the speed gradient is
varied. The position at which C' = w is highlighted by a dot-
ted red line. Parameters: H = 0, N = 0, K,, = 0.53, 6o =
50, n =2, w=0.2,n=1,5,10,40. For the chosen parame-
ters, n = 40 is just above the threshold given by (15)

0B 1 0D d C
ax B{wax%x (cwxﬂo’ (16)

where we used D(X) = V(X)?2. This equation can be
integrated to give the steady state

B v C cr
B~ Vexp{é" <C+Kx ) O*+KX)}’ "

where B*,C*,V* are reference values at a chosen ref-
erence point X*. It is thus clear that in addition to
the influence on the dynamics, chemokinesis affects the
steady-state solution via the term V*/V, where V varies
in space due to chemokinesis. In the case of chemoki-
nesis but no chemotaxis (i.e. o = 0), the steady-state
is determined by the inverse of the speed distribution,
i.e. the bacteria accumulate at low speed, as expected
and shown previously [25,32,33]. For nonzero dy, if the
speed is uniform in space, V*/V = 1 and Eq. (17)
reduces to the chemotactic steady-state solution. The
exponential term in Eq. (17) represents the chemotactic
contribution to the steady state, which does not depend
on the swimming speed. Thus, the increase in chemo-
tactic sensitivity x [see Eq. (8)] must be balanced by the
increase in diffusivity at steady state in a fixed chemical
gradient. However, chemokinesis still affects the steady
state via the term V*/V. This chemokinetic effect in
the steady-state may only be detectable in experiments
with small 6p = xo/D}, since the chemotactic exponen-
tial term will dominate V*/V for large do.

3.2 Self-generated gradient: agar plate

We now consider an evolving attractant field with con-
sumption and growth of bacteria. The attractant is ini-
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Fig. 5 Self-generated gradient. Bacterial populations (bot-
tom row) create an attractant gradient (top row) via con-
sumption, which they respond to with chemotaxis at base
speed V = 1 (blue curve) or chemotaxis—chemokinesis
(orange curve). Chemokinesis leads to a faster but also
broader, less pronounced bacterial wave. The chemotac-
tic population travelling at constant speed V = 1+ 7
(purple curve) has the fastest travelling pulse. Parameters
H =35 Ks =1, N = 05, K, = 053,00 = 105, n =
0.5, w=05n=5T=1,88,164

tially uniformly distributed in a 2D axisymmetric set-
ting. This set-up is reminiscent of the classical agar
plate experiments, in which bacteria are inoculated in
the centre of a nutrient agar plate, see e.g. [29,34].
While growing and consuming nutrient, the population
creates a gradient of attractant, which it then follows
outwards in a chemotactic wave. The attractant pro-
file is a travelling wave itself, and we assume here that
the profile relative to the bacterial travelling wave is
stationary, i.e. ¢ =0 in the chemotactic drift (11e).

In Fig. 5, we compare two chemotactic populations to
a chemotactic—chemokinetic population. The chemotac-
tic populations travel at a constant speed, either V =1
(blue curve) or V = 1+ n (purple curve). Both popu-
lations develop a sharp travelling wave, with a larger
wave speed for the population at speed ¥V =14 1. The
chemotactic—chemokinetic bacterial population, on the
other hand, develops a broader wave profile. The peak
of the wave front is smaller and is followed by a plateau.
This effect is more pronounced at late times, as can be
seen in the third lower panel of Fig. 5. The reduced
pulse also travels slower than the pulse of the chemo-
tactic population at elevated speed V = 1 4 1 because
the front speed scales with the number of bacteria in
the pulse [35]. This observation might explain why in
agar plate experiments testing for chemotaxis, chemoki-
netic species such as Sinorhizobium meliloti lack the
sharp bands [8,36], which are known to be a hallmark
of chemotaxis for other species, e.g. E. coli [29,34].

Chemokinesis confers an additional biological advan-
tage in the form of increased population growth as
shown in Fig. 6, which shows the integrated number
of cells over time. At any point in time, the chemo-
tactic population is smaller than the chemotactic—
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Fig. 6 Population growth. The size of the populations in
Fig. 5 is the bacterial density integrated over the simula-
tion domain. Faster travelling waves of the chemokinetic—
chemotactic population (orange curve) and the chemotactic
population at constant speed V =1+ n (purple curve) also
induce a faster population growth due to consumption of
nutrients, compared to the chemotactic population travel-
ling at V =1 (blue curve). Parameters as in Fig. 5

chemokinetic population. However, the chemotactic
population at elevated speed, ¥V = 1 + 7, (purple
curve) shows a stronger population growth than the
chemotactic—chemokinetic population due to the faster
travelling pulse, which is caused by the increased swim-
ming speed. This increase in swimming speed is associ-
ated with metabolic cost [37]. Thus, permanently swim-
ming faster independent of the attractant concentration
could be a beneficial strategy, if the metabolically avail-
able energy is not constrained by nutrient supply. When
nutrient concentrations are low, on the other hand,
increasing swimming speed provides no benefit to bac-
teria and metabolism is a limiting factor. Chemokine-
sis could provide an advantageous speed enhancement
when it is both metabolically affordable and beneficial
[4,20]. While the situation considered in this section
assumed an abundant supply of chemoeffectors (and in
this case nutrients), the next section will consider the
response to a transient burst of chemoeffectors.

3.3 Transient source

A localized burst of chemoeffector may, e.g., occur in
the sea if algae/phytoplankton lyse and release their
content, as has been recently studied in the labora-
tory [38], or when marine particles exude plumes of
chemoeffector [39]. In soil, plant roots exude sugars
and other potential nutrients, which locally create a
high concentration of chemical attractants. In the fol-
lowing, we consider a single strong pulse of chemoeffec-
tor originating from a finite-size axisymmetric source
that dissipates via diffusion, modelling a potential
dynamic environment around roots or marine parti-
cles. The attractant profile that develops is C(R,T) =
S(AnNT) L exp(—R?*/ANT), with S representing the
amount of chemoeffector contained in the pulse in non-
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T =0.01 T =0.05 T =0.64

e~

Attractant C'

Bacteria B

Fig. 7 Time evolution of the bacterial response to a dif-
fusing attractant from a transient source. Bacterial popu-
lations (bottom row) are attracted to source of diffusing
attractant (top row). The chemokinetic—chemotactic popu-
lation (orange curve) shows a faster and stronger accumu-
lation than the purely chemotactic population (blue curve).
Parameters H = 3.5, Ks = 1, N = 0.5, K, = 0.53, o =
50,n=2,w=02,n=1,5=0.5 T =0.01,0.05,0.64; no
bacterial growth

dimensional units. The attractant profile is shown in
Fig. 7 (top row), while the bacteria are initially uni-
formly distributed in the domain at concentration 0.2.
To model the response to such a transient attractant
profile, we need to include the chemotactic drift veloc-
ity, Eq. (11e) with ¢ > 0, modified to account for the
effective gradient perceived by bacteria as they traverse
the temporally varying pulse (see “Appendix A”).

As shown in Fig. 7, bacteria with chemotaxis and
chemokinesis display a faster and stronger response
to a chemoeffector pulse than those with chemotaxis
alone. This strong accumulation occurs in spite of the
fact that, because of chemokinesis, diffusivity close to
the source is higher for these bacteria. For the tran-
sient pulse under consideration, temporal variations in
the chemoeffector concentration (~ 0;f,) need to be
considered when modelling the chemotactic response.
Indeed, the run duration for a bacterium travelling
up/down the gradient is 758 o £(vV f, + Opfy) (see
“Appendix A”). Thus, when v is higher, as for chemoki-
netic bacteria, the effect of temporal variation on the
chemotactic bias of tumbles is reduced, increasing the
accuracy of the chemotactic response. This effect con-
tributes to accounting for the stronger accumulation
of chemotactic—chemokinetic bacteria. To illustrate this
further, in Fig. 8, we plot the number of bacteria accu-
mulated at the attractant source, Bg (the maximum
of the bacterial profiles shown in Fig. 7), as a function
of time, for chemotactic and chemotactic—chemokinetic
populations. The plot displays bacterial accumulation
when the temporal perturbation to the chemotactic
response is included in the model [¢ > 0 in (11le)] and
when it is not (¢ = 0). In the case of a purely chemotac-
tic population, it can be seen that the predicted amount
of bacteria accumulated at the source is lower for a
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Accumulated bacteria Bg
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0.6 —noCK --noCK & (=0
CK -—-CK& (=0
0.2L . . . . . )
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time T

Fig. 8 Accumulation at a transient source. The bacterial
accumulation at the source is reduced due to the reduced
drift Vi if the transient nature of the attractant profile is
taken into account (i.e. ¢ # 0). Chemokinesis (CK) miti-
gates for this effect. Parameters H = 3.5, Ks = 1, N =
0.5, Ky, = 0.53, 80 = 50, { = 8.164-1072,n =2 (n = 0 if
no CK), w = 0.2, n = 1, S = 0.5; no bacterial growth. If
V,, includes the effect of transient source, ¢ = 8.164 - 1073,
otherwise ( = 0

model that ignores the temporal perturbation than for
one that includes it. Chemokinesis, on the other hand,
reduces the relative effect of temporal perturbation so
much that there is very little difference between model
predictions with ( =0 and ¢ > 0.

These results suggest that a chemokinetic population
might be able to overtake purely chemotactic competi-
tors in response to a sudden nutrient release. While the
difference observed in Fig. 8 of at most ~ 12% may seem
small, a corresponding boost to the growth rate can
be sufficient to outcompete a purely chemotactic strain
within a few generations. In such transient nutrient
landscapes, we have further shown that chemokinesis
can reduce the adverse effect that a temporal change in
attractant profile can have on the chemotactic response.

4 Discussion

Chemokinesis is a known response for many environ-
mentally relevant bacteria, yet its consequences for bac-
terial population dynamics have been little explored.
In this work, using a modified Keller—Segel contin-
uum model, we have shown how chemokinesis signif-
icantly affects both the dynamics and steady-states
of bacterial populations capable of chemotactic and
chemokinetic behaviour. Our model incorporates the
effects of a concentration dependent speed, including an
increase in the chemotactic sensitivity, and a recently
suggested modification to the chemotactic response in
dynamic environments [28], which was derived adapt-
ing the microscopic model first suggested by de Gennes
[30].

We have solved our model numerically to explore the
effect of chemokinesis on migration and accumulation in
experimentally realistic gradients. In a fixed attractant
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gradient, our results show that chemokinesis can lead
to two subpopulations travelling at different speeds,
with the slower one being held back by the chemoki-
netic drift. In the case of agar plate migration, where
bacteria inoculated onto the plate generate their own
gradient by consuming nutrients, we find that popula-
tions with chemokinesis migrate out from the inocula-
tion point in waves that are faster, but broader than
purely chemotactic migrating populations. While the
increase in front speed could be explained by a pop-
ulation at a uniformly increased swimming speed, the
broadening is only observed in the chemokinetic pop-
ulation. It is a new feature not predicted by previous
studies using agent based simulations [15]. It is possi-
ble that this broadening might explain why the clas-
sic chemotactic Adler bands observed for E. coli [34]
are not observed for chemokinetic soil bacteria such as
Sinorhizobium meliloti [8,36]. Furthermore, chemoki-
nesis increases the population growth significantly in
comparison with purely chemotactic migration.

Our simulations also considered the case of a tran-
sient source of nutrients, e.g., a lysed algal cell. In this
case, our results show how bacteria with chemokinesis
and chemotaxis accumulate faster and more strongly
around the source, while concentrations of nutrients are
high, with respect to purely chemotactic bacteria. This
chemokinetic advantage is both due to the enhanced
migration discussed in the previous examples, but also
to the fact that chemokinesis mitigates the perturba-
tion to the chemotactic response due to the transient
nature of the attractant profile. We note that, while our
model includes the effect of transient chemical fields
on tumbles, it does not include a recently modelled
effect of chemokinesis on the precision of chemosens-
ing [40]. It will be interesting to include this additional
effect, which could lead to further enhancements in
chemokinetic accumulations, in future elaborations of
our model.

The role of metabolism is an important considera-
tion for chemokinesis. For example, positive chemoki-
nesis might be caused purely by an increase in nutrient
availability. A resulting increase in the energy level of
the cell may lead to more energy being available for
flagella rotation, which allows the cell to swim faster.
As the chemotactic sensitivity scales with the swim-
ming speed as x o v2, a faster swimming population
will always show a stronger chemotactic drift. However,
swimming is associated with a considerable metabolic
cost [37,41,42]. Indeed, the energetic cost of swimming
increases quadratically with the swimming speed [43].
Therefore, it might be beneficial to swim faster (and,
thereby, improve chemotaxis) only if favourable nutri-
ent conditions are available. While the energy level of
a cell may influence the extent of the chemokinetic
response, there are several indications of metabolism-
independent chemokinesis for different bacterial species
[5,12,13]. In a dynamic environment such as considered
in Sect. 3.3, chemokinesis can then help to reduce tem-
poral bias and improve the chemotactic response. As
pointed out by Hein et al, the threshold for detect-
ing absolute concentration is smaller than for gradi-
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ent detection [28]. Thus, chemokinesis can take place
at lower background concentrations to improve chemo-
taxis only when needed.

The predictions of our model include interesting qual-
itative effects, which have not previously been observed
in agent-based models: the slower subpopulation in the
fixed attractant profile, and a broadening of the trav-
elling wave in a self-generated gradient. To test these
predictions experimentally, chemotaxis and chemokine-
sis should be addressed independently. For example,
a recently developed FE.coli system with a swimming
speed that is controlled via light [33] could be used to
engineer populations with a swimming speed that can
be controlled independently of chemotaxis.

Future theoretical investigations would benefit sig-
nificantly from the experimental measurement of the
chemokinetic response function relating swimming speed
and local attractant concentration. In this work, we
assumed a smooth change from a reference speed to an
increased speed, where the degree of change in swim-
ming speed changed with a single parameter. As we
have shown, a very steep change in swimming speed
(e.g. in form of a step change as assumed previously
in agent-based models [14,15]) could actually inhibit
chemotaxis rather than promote it. Experimental work
so far has been restricted to measurements at very few
different attractant concentrations, which makes it dif-
ficult to deduce a functional relationship between speed
and attractant concentration. Thus, further work is
required to determine the function v(c) for chemoki-
netic bacterial species. Such measurements would also
allow elucidation of the rate of adaptation, i.e. how
quickly the swimming speed adapts to its new value
both for an increase and decrease in attractant con-
centration, and which we have here assumed instanta-
neous. The increase in the population-averaged swim-
ming speed in response to a uniform addition of effec-
tor occurred on the time-scale of 100-200s for V. algi-
nolyticus [15]. In [12], on the other hand, the chemoki-
netic response of R. sphaeroides was measured within
10s upon uniform addition of chemoeffector, at which
point the swimming speed had already adapted to its
increased level. Furthermore, a desensitization to a sus-
tained higher level of attractant, as observed for chemo-
taxis, does not seem to occur as the swimming speed
remained at elevated levels for hours in R. sphacoroides
and A. brasilense [10,12]. The discrepancy in the order
of magnitude in the response times might be caused by
the experimental set-ups, e.g. in [15], the effector first
needs to diffuse from two sides in a wide microfluidic
channel before a uniform population response can be
measured. To conclude, further experiments could shed
some light on the chemokinetic response function and
adaptation time, which would benefit the further devel-
opment of the model and its assumptions to understand
how bacteria make use of chemokinesis in dynamic envi-
ronments.

Supplementary information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epje/s10189-021-00009-w.
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Appendix A: Chemotactic drift and sensitiv-
ity

Here, we derive new relations for the chemotactic drift
speed V, and sensitivity parameter x for bacteria undergo-
ing chemotaxis and chemokinesis in dynamic environments,
connecting the macroscopic parameter y with the micro-
scopic swimming speed v and tumbling rate . We follow
the approach of de Gennes [29,30,44], considering run-and-
tumble bacteria with a simplified E. coli-like chemotactic
response. Our contribution for the purpose of this work is
to include: (i) a swimming speed that is a function of posi-
tion; (ii) a temporally varying contribution to the gradient
perceived by the bacteria. As in [29,30], we consider a one-
dimensional model of run-and-tumble bacteria propagating
in gradient of attractant, to which bacteria are exhibiting a
‘small response’, that is the tumbling response remains close
to the adapted value [45]. Chemotactic memory is mod-
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elled through kernel integral, reflecting the fact that bacteria
‘remember’ their chemical environment over a characteristic
delay time of a few seconds. We neglect directional persis-
tence and rotational diffusion, which can be addressed in
the same framework [44], but are here ignored for simplicity.
The modified de Gennes model we employ could be applica-
ble to chemokinetic species like rhizobia, which display run
and tumble dynamics [6]. The model neglects features of the
motility pattern of chemokinetic marine bacteria, such as a
run-reverse-flick mechanism or the influence of a change in
swimming speed on reorientation frequency, as observed for
V. alginolyticus [15], but instead focus on the pure effect of
speed change.

As the tumbling frequency follows an exponential dis-
tribution, tumbling events can be treated as independent
events of a Poisson process with rate a(t) = ape™ >, where
ap is the tumbling rate in the absence of a gradient and
where A(t) is the chemotactic bias given by the memory

integral
¢
At) = /

The concentration function was chosen as in the main text
as fy = c(z,t)/(c(z,t) + ky). The memory kernel K (t) was
first measured for E. coli [46] and more recently also for V.
alginolyticus [47]. Based on these experiments we assume
that the kernel obeys [° K(t)dt = 0, i.e. the tumbling rate
perfectly adapts. As mentioned, we shall assume a small
response (A(t) < 1), so that the bacterial tumble rate can
be linearized to

AV K (t —t') fy (z(t)). (A1)

a(t) ~ ao(l — A1), (A2)
Considering a run that starts at ¢ = 0, the probabil-
ity density of a tumble event in the interval [t,¢ + dt] is

a(t) exp(— fot dt’a(t’)). The mean run duration is given by

= </Ooo a(t) exp (— /Ot dt/a(t')> tdt>pams’ (A3)

where angled brackets denote averaging over all possible
bacterial swimming paths, as the tumble rate is path-
dependent. (The ‘paths’ subscript will be omitted hence-
forth.) Integrating (A3) by parts and recalling (A2), we can
write

= </00o e ' exp (/Ot dt'A(t')) dt>paths, (A4)

Next, since A(t) < 1, we can linearize the exponential inte-
gral to obtain

(e} t
SN ao/ dte” 0" </ dt’A(t')>7
@0 0 0

where we have brought the angled brackets inside the time
integral to surround only path-dependent quantities. Sub-
stituting the expression for the bias (A1) and performing a
change of variables in the memory integral (A2) by defining
u =1t —t, we then obtain

1 oo
T=—"—+ ao/ dte=o?
Qo

x </0t ar' /(;oo du K (u) fy (x(t’ — u))> .
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Next, as the time interval of interest is small compared
to the gradient variations, we can Taylor expand the con-
centration function about a reference position and time:

Fx(z(t —u)) = const + x(t —u)Vfy [¢ +(t —u)Ofx |u) -
(AT)

We note that the constant term does not influence the inte-
gral in (A6), since the response function K (u) integrates to
zero. Further analysis is simplified by considering the special
response function

K(u) = Ad(u —6), (A8)
where 0 is a single delay time [30]. We note that this function
does not represent a physical response and is considered
solely for the purpose of facilitating the calculation. Then,
substituting Eqgs. (A8) and (A7) into (A6) and integrating
over the delta function, we obtain

T = + Aao/ e NI (t) + I2(t)]dt (A9)
(e 7h) 0
where we have defined
t
Li(t) = </ Vfyx(t —0) dt’>
0 (A10)

=V/fy /Ot (z(t' —0))dt".

The average over paths can be taken inside the time integral
since tumbles for t > 0 are treated as having no effect on
cell motion, so that paths are independent of time on the
interval considered. Proceeding similarly, we define

B(t) = [ (¢ =0) (00 o) . (AL1)

To evaluate (A10), we recall that the bacteria we are con-
sidering do not undergo rotational diffusion and do not pos-
sess directional persistence. Thus, following [30], we see that
for times preceding a run (when a bacterium is tumbling)
the position of a bacterium is, when averaging over paths,
not correlated to the velocity. On the other hand, during
a run, the position correlates with velocity. In this way, in
(A10), we have

/ 0, <0
alt = 0)) = {:I:v(x)(t' ) v S (A12)
So that integral (A10) becomes:
L) = +V (@) / W gyal = +v fxv(x)w
’ (A13)

We proceed analogously to evaluate integral (A11). In this
case, the integral over paths for times preceding a run does
not average to zero, but sums up the contributions from the
temporal variation of the gradient during tumbles. During a
run, on the other hand, the temporal variation is evaluated
for when bacteria are travelling up (down) the gradient, pro-
viding positive (negative) weights to the path integration,
which provides

<0
>0

F(t',0),

LSy (A14)

(Ocfx lewry) = {
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where F(t',0) is a function of time and delay. In this way,
we can carry out integral (A11)

L(t) :/09 F',0)t' —0)dt' + 0ify | / (t' —0)dt

t
]
(t' —6)2

:G(evt):l:atfx ‘Z 2

(A15)

where we have defined G(60,t) = [JF(t,0)(t — 0)dt'.
Because it does not depend on direction up/down the gra-
dient, this function (and its integrals) will cancel out in the
evaluation of the run time, and will henceforth be omitted
from the derivation. Inserting expressions (A13) and (A15)
back into (A9), we can thus write the mean run durations
up (R) and down (L) the gradient as

PR 1 + Aao/ dte™ ot
ao 0 A16
(t— 0 (A16)

X £ w(@)Vfx + 0 fy] 5

which can be integrated to obtain

PRy Ly 0@ [fo +

ap ol v(z)

o fx} Ae=*?  (A17)

Extending to general response function K (6) with a distri-
bution of delays [30], Eq. (A17)

L,R __ i U(HU) 1 /OQ —af
Tl o T | Vhck i [ oK@
(A18)
Since ar,r = 1/7L,r and (see main text)
arp — OR
Ve = - A19
= v(x) an+aL’ ( )

we then arrive at an expression for the chemotactic drift

Y@ 5 [9p + o]
(@)

where we have defined the constant 8 = [ d0K (0)e 0’
The standard definition of the chemotactic sensitivity is
obtained from the empirical drift Vi, = xVfy, where as
previously x is the chemotactic sensitivity. We extend here
the definition to include temporal gradients, and define

v, = (A20)

@o

(A21)

so that chemotactic drift is given by Eq. (5) in the main text.
In the absence of chemokinetic alterations to the swimming
speed, the sensitivity is simply

2

X0 = /Uio ’ (A22)

Qo

where subscripts denote a constant swimming speed. Divid-
ing (A21) by (A22) provides relationship (8) in the main
text.
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Table 1 Parameters used in simulations

Parameter Value Figures References
H 0.0 3,4 -
3.5 57,8 [29]
N 0.0 3,4 -
0.5 57,8 [29]
do 50.0 3,4, 7 -
105.0 5 29]
w 0.2 3,4, 7 -
0.5 5 -
n 2.0 3,4, 7 -
0.5 5 [5]
n 1 4,7 -
5 3,45
10 4 -
40 4 -
¢ 0.0 3,45 -
8.164 x1073 7 [29]
Ks 1.0 3,45, 7 [29]
Ky 0.53 3,45, 7 [29]
S 0.5 78

Please see main text for parameter definitions

Appendix B: Numerical solution and param-
eter values

A finite difference scheme was chosen to compute the numer-
ical solution of the system of PDEs (11). The domain
) is represented by a vector of M equally spaced grid
points, X1, ..., Xa. A fourth-order scheme in space and a
first order scheme in time are used to approximate the
derivatives. Homogeneous Neumann boundary conditions
are imposed for both substrate and bacterial concentration,
i.e. %|X=1,M =0 and %‘X:l,M =0.

In the case of steady attractant gradient (Figs. 3, 4),
the initial attractant distribution is C(X,0) = 0.01X,
while the bacteria are uniformly distributed B(X,0) = 1.0.
For the self-generated gradient (Figs. 5, 6) we assume
a Gaussian bacterial inoculum, B(R,0) = exp(—R?/c?),
with a corresponding attractant distribution, C'(R,0) =
1 — exp(—R?/0?) [29]. Finally, for Figs. 7 and 8, the bac-
teria are initially uniformly distributed B(R,0) = 0.2,
while the attractant distribution is C(R,0) = S(4nNT)™*
exp(—R?*/4TN), where S = 0.5 and T = 0.02.

The parameters used in the non-dimensional model are
summarized in Table 1. The parameters are mostly based
on literature values for F. coli. Due to the lack of experimen-
tal data required for a full estimate of the functional form of
the chemokinetic response of, e.g. a single species, the val-
ues for the chemokinetic response (7, w, n) are motivated
by several studies and chosen to illustrate the response. For
example, n = 0.5 corresponds to a 50% maximum increase
in the swimming speed, which is on the order of magnitude
that has been reported for several species [5,12,13]. The
largest increase reported, to the best of our knowledge, is
80% for V. alginolyticus [15]. Thus, n = 2 is chosen as an
extreme value to illustrate the effect of chemokinesis more
clearly. The half-saturation constant w, which is required
for the chemokinetic function given by Eq. (12), has not
been reported directly. Upon (visual) inspection of results,
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half-saturation constants may be about 0.1mM of glucose
and 0.1mM of acetate for E.coli [13] and R. sphaeroides
[12], respectively. In [5], the half maximum speed seems
to be reached at about 30% relative mucus concentration,
while the maximum is reached at about 60%. As pointed
out in [28], absolute concentration above a threshold can
be detected before gradients can be accurately measured.
Therefore, we assumed that the half-saturation constant of
chemokinetic response (w) should be below or on the same
order as the chemotactic half-saturation constant (Ky). As
there has not been a functional fit to chemokinesis mea-
surements, an estimate for the Hill factor n is difficult. From
visual inspection of results in [5,13], we may assume a factor
between 1 and 3. Simulations with larger Hill factors were
performed to compare to results based on the assumption
of a step-change in swimming speed (i.e. n — 00) as done in
agent-based models [5,15]. The parameters used to produce
the figures in the main text were chosen to illustrate the
effect of chemokinesis best. As a comparison, other param-
eter combinations are given in the Supplementary Material.
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