Skip to main content
Log in

Pore shapes effects on polymer translocation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We translocated polymers through pores of different shapes and interaction patterns in three dimensions by Langevin molecular dynamics. There were four simple cylindrical pores of the same length but with different diameters. The results showed that even though decreasing the pore diameter would always decrease the translocation velocity, it was strongly dependent on the shape of the increased pore diameter. Although increasing the pore diameter made the translocation faster in simple cylindrical pores, it was complicated in different pore shapes, e.g. increasing the diameter in the middle decreased the translocation velocity. Investigating polymer shapes through the translocation process and comparing the shapes by the cumulative waiting time for different pore structures reveals the non-equilibrium properties of translocation. Moreover, polymer shape parameters such as gyration radius, polymer center of mass, and average aspect ratio help us to distinguish different pore shapes and/or different polymers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Palyulin, T. Ala-Nissila, R. Metzler, Soft Matter 10, 9016 (2014)

    Article  ADS  Google Scholar 

  2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Publishing, New York, 2002)

  3. M. Muthukumar, Annu. Rev. Biophys. Biomol. Struct. 36, 435 (2007)

    Article  Google Scholar 

  4. T.A. Rapoport, Nature 450, 663 (2007)

    Article  ADS  Google Scholar 

  5. D. Branton, D. Deamer, Nanopore Sequencing: An Introduction (World Scientific Publishing Company Pte Limited, 2019) URL https://books.google.com/books?id=S1L2twEACAAJ

  6. S. Carson, M. Wanunu, Nanotechnology 26, 074004 (2015)

    Article  ADS  Google Scholar 

  7. A. Oukhaled, L. Bacri, M. Pastoriza-Gallego, J.-M. Betton, J. Pelta, ACS Chem. Biol. 7, 1935 (2012)

    Article  Google Scholar 

  8. J.E. Reiner, A. Balijepalli, J.W. Robertson, J. Campbell, J. Suehle, J.J. Kasianowicz, Chem. Rev. 112, 6431 (2012)

    Article  Google Scholar 

  9. E.D. Marzio, J.J. Kasianowicz, J. Chem. Phys. 119, 6378 (2003)

    Article  ADS  Google Scholar 

  10. J.J. Nakane, M. Akeson, A. Marziali, J. Phys.: Condens. Matter 15, R1365 (2003)

    ADS  Google Scholar 

  11. D. Branton, D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krsticand, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, Nat. Biotechnol. 20, 1146 (2008)

    Article  Google Scholar 

  12. J.A. Cohen, A. Chaudhuri, R. Golestanian, Phys. Rev. X 2, 2160 (2012)

    Google Scholar 

  13. P. Fanzio, C. Manneschi, E. Angeli, V. Mussi, G. Firpo, L. Ceseracciu, L. Repetto, U. Valbusa, Sci. Rep. 2, 791 (2012)

    Article  ADS  Google Scholar 

  14. F. Liang, P. Zhang, Sci. Bull. 60, 296 (2015)

    Article  Google Scholar 

  15. S.M. Bezrukov, I. Vodyanoy, V.A. Parsegian, Nature 370, 279 (1994)

    Article  ADS  Google Scholar 

  16. J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)

    Article  ADS  Google Scholar 

  17. A. Meller, J. Phys.: Condens. Matter 15, R581 (2003)

    ADS  Google Scholar 

  18. D. Panja, G.T. Barkema, A.B. Kolomeisky, J. Phys.: Condens. Matter 25, 413101 (2013)

    Google Scholar 

  19. L.-Z. Sun, M.-B. Luo, J. Phys.: Condens. Matter 26, 415101 (2014)

    Google Scholar 

  20. M. Pu, H. Jiang, Z. Hou, J. Chem. Phys. 145, 174902 (2016)

    Article  ADS  Google Scholar 

  21. I.J. Molineux, D. Panja, Nat. Rev. Microbiol. 11, 194 (2013)

    Article  Google Scholar 

  22. J. Shin, A.G. Cherstvy, R. Metzler, Soft Matter 11, 472 (2015)

    Article  ADS  Google Scholar 

  23. Y. Li, R. Mei, Y. Xu, J. Kurths, J. Duan, R. Metzler, New J. Phys. 22, 053016 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.G. Cherstvy, A.V. Chechkin, R. Metzler, Soft Matter 10, 1591 (2014)

    Article  ADS  Google Scholar 

  25. D. Tomkiewicz, N. Nouwen, A.J.M. Driessen, Fed. Eur. Biochem. Soc. Lett. 581, 2820 (2007)

    Article  Google Scholar 

  26. P.M. Suhonen, R.P. Linna, Phys. Rev. E 93, 012406 (2016)

    Article  ADS  Google Scholar 

  27. R.H. Abdolvahab, Phys. Lett. A 380, 1023 (2016)

    Article  ADS  Google Scholar 

  28. R. Zandi, D. Reguera, J. Rudnick, W.M. Gelbart, Proc. Natl. Acad. Sci. U.S.A. 100, 8649 (2003)

    Article  ADS  Google Scholar 

  29. T. Ambjörnsson, R. Metzler, Phys. Biol. 1, 77 (2004)

    Article  ADS  Google Scholar 

  30. R.H. Abdolvahab, F. Roshani, A. Nourmohammad, M. Sahimi, M.R.R. Tabar, J. Chem. Phys. 129, 235102 (2008)

    Article  ADS  Google Scholar 

  31. R.H. Abdolvahab, M.R. Ejtehadi, R. Metzler, Phys. Rev. E 83, 011902 (2011)

    Article  ADS  Google Scholar 

  32. K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, Phys. Rev. Lett. 99, 148102 (2007)

    Article  ADS  Google Scholar 

  33. L.-Z. Sun, W.-P. Cao, M.-B. Luo, Phys. Rev. E 84, 041912 (2011)

    Article  ADS  Google Scholar 

  34. M.-B. Luo, W.-P. Cao, Phys. Rev. E 86, 031914 (2012)

    Article  ADS  Google Scholar 

  35. H.W. de Haan, G.W. Slater, Phys. Rev. Lett. 110, 048101 (2013)

    Article  ADS  Google Scholar 

  36. T. Ikonen, J. Chem. Phys. 140, 234906 (2014)

    Article  ADS  Google Scholar 

  37. H. Katkar, M. Muthukumar, J. Chem. Phys. 140, 04B602_1 (2014)

    Article  Google Scholar 

  38. R. Kumar, A. Chaudhuri, R. Kapri, J. Chem. Phys. 148, 164901 (2018)

    Article  ADS  Google Scholar 

  39. M.N. Hamidabad, R.H. Abdolvahab, Sci. Rep. 9, 17885 (2019)

    Article  ADS  Google Scholar 

  40. J.A. Cohen, A. Chaudhuri, R. Golestanian, Phys. Rev. Lett. 107, 238102 (2011)

    Article  ADS  Google Scholar 

  41. J.A. Cohen, A. Chaudhuri, R. Golestanian, J. Chem. Phys. 137, 204911 (2012)

    Article  ADS  Google Scholar 

  42. M. Magill, E. Waller, H.W. de Haan, J. Chem. Phys. 149, 174903 (2018)

    Article  ADS  Google Scholar 

  43. V. Bianco, P. Malgaretti, J. Chem. Phys. 145, 114904 (2016)

    Article  ADS  Google Scholar 

  44. P. Malgaretti, G. Oshanin, Polymers 11, 251 (2019)

    Article  Google Scholar 

  45. G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986)

    Article  ADS  Google Scholar 

  46. Ilkka Huopaniemi, Kaifu Luo, Tapio Ala-Nissila, See-Chen Ying, Phys. Rev. E 75, 061912 (2007)

    Article  ADS  Google Scholar 

  47. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge UK, 2001)

  48. H. Limbach, A. Arnold, B. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006)

    Article  ADS  Google Scholar 

  49. F. Weik, R. Weeber, K. Szuttor, K. Breitsprecher, J. de Graaf, M. Kuron, J. Landsgesell, H. Menke, D. Sean, C. Holm, Eur. Phys. J. ST 227, 1789 (2019)

    Article  Google Scholar 

  50. W. Yu, K. Luo, J. Am. Chem. Soc. 133, 13565 (2011)

    Article  Google Scholar 

  51. T. Ikonen, A. Bhattacharya, T. Ala-Nissila, W. Sung, Phys. Rev. E 85, 051803 (2012)

    Article  ADS  Google Scholar 

  52. M. Muthukumar, Polymer Translocation (Taylor & Francis, Boca Raton, 2011)

  53. H.H. Katkar, M. Muthukumar, J. Chem. Phys. 148, 024903 (2018)

    Article  ADS  Google Scholar 

  54. Z.E. Dell, M. Muthukumar, Macromolecule translocation in a nanopore: Center of mass drift--diffusion over an entropic barrier, BioRxiv:667816 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Haji Abdolvahab.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haji Abdolvahab, R., Niknam Hamidabad, M. Pore shapes effects on polymer translocation. Eur. Phys. J. E 43, 76 (2020). https://doi.org/10.1140/epje/i2020-12001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-12001-y

Keywords

Navigation