Skip to main content
Log in

Nanometer optical trap based on stimulated emission in evanescence of a totally reflected Arago spot

Nanometer optical trap for fluorescent nanoparticles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Optical tweezers have paved the way towards the manipulation of particles and living cells at the micrometer range. Its extension towards the nanometer world may create unprecedented potentialities in many areas of science. Following a letter (O. Emile, J. Emile, H. Tabuteau, EPL 129, 58001 (2020)) that reported the observation of the trapping of a single 200nm diameter fluorescent particle in a nanometric volume, we detail here our experimental findings. In particular, the trapping mechanism is shown to be based on the radiation pressure of light in one direction and on the stimulated emission of the particle in the evanescent wave of a nanometer Arago spot on a glass/liquid interface on the other directions. The trapping volume is a 200nm height cylinder whose radius varies with the spreading of the evanescent wave near the spot and can reach 50nm. The calculation of the force and the parameters limiting the lifetime are detailed. Applications to laser trapping of atoms and molecules are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  2. A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000)

    Article  ADS  Google Scholar 

  3. D.G. Grier, Nature 424, 810 (2003)

    Article  ADS  Google Scholar 

  4. K.C. Neuman, S.M. Block, Rev. Sci. Instrum. 75, 2787 (2004)

    Article  ADS  Google Scholar 

  5. O.M. Maragò, P.H. Jones, P.G. Gucciardi, G. Volpe, A.C. Ferrari, Nat. Nanotechnol. 8, 807 (2013)

    Article  ADS  Google Scholar 

  6. A. Gennerich, Optical Tweezers (Springer, New York, 2017)

  7. P. Polimeno, A. Magazzù, M.A. Iatì, F. Patti, R. Saija, C.D.E. Boschi, M.G. Donato, P.G. Gucciardi, P.H. Jones, G. Volpe, O.M. Maragò, J. Quant. Spectrosc. Radiat. Transfer 218, 131 (2018)

    Article  ADS  Google Scholar 

  8. R. Bowman, G. Gibson, M. Padgett, Opt. Express 18, 11785 (2010)

    Article  ADS  Google Scholar 

  9. E. Bertseva, D. Grebenkov, P. Schmidhauser, S. Gribkova, S. Jeney, L. Forró, Eur. Phys. J. E 35, 63 (2012)

    Article  Google Scholar 

  10. G. Sancataldo, L. Scipioni, T. Ravasenga, L. Lanzanò, A. Diaspro, A. Barberis, M. Duocastella, Optica 4, 367 (2017)

    Article  ADS  Google Scholar 

  11. U.F. Keyser, J. Van der Does, C. Dekker, N.H. Dekker, Rev. Sci. Instrum. 77, 105105 (2006)

    Article  ADS  Google Scholar 

  12. D.B. Phillips, S.H. Simpson, J.A. Grieve, R. Bowman, G.M. Gibson, M.J. Padgett, J.G. Rarity, S. Hanna, M.J. Miles, D.M. Carberry, EPL 99, 58004 (2012)

    Article  ADS  Google Scholar 

  13. F. Qian, S. Ermilov, D. Murdock, W.E. Brownell, B. Anvari, Rev. Sci. Instrum. 75, 2937 (2004)

    Article  ADS  Google Scholar 

  14. P. Mangeol, D. Côte, T. Bizebard, O. Legrand, U. Bockelmann, Eur. Phys. J. E 19, 311 (2006)

    Article  Google Scholar 

  15. G.V. Soni, M.P. Jonsson, C. Dekker, Small 9, 679 (2013)

    Article  Google Scholar 

  16. X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, D. Sun, Lab Chip 11, 3656 (2011)

    Article  Google Scholar 

  17. C.W. Shields IV, C.D. Reyes, G.P. López, Lab Chip 15, 1230 (2015)

    Article  Google Scholar 

  18. A. Keloth, O. Anderson, D. Risbridger, L. Paterson, Micromachines 9, 434 (2018)

    Google Scholar 

  19. M.C. Noom, B. Van Den Broek, J. Van Mameren, G.J. Wuite, Nat. Methods 4, 1031 (2007)

    Article  Google Scholar 

  20. B. Jagannathan, S. Marqusee, Biopolymers 99, 860 (2013)

    Article  Google Scholar 

  21. B.M. Mihiretie, P. Snabre, J.C. Loudet, B. Pouligny, Eur. Phys. J. E 37, 124 (2014)

    Article  Google Scholar 

  22. J.A. Rodrigo, T. Alieva, Optica 2, 812 (2015)

    Article  ADS  Google Scholar 

  23. Z. Zhang, T.E. Kimkes, M. Heinemann, Sci. Rep. 9, 19086 (2019)

    Article  ADS  Google Scholar 

  24. R. Zhu, T. Avsievich, A. Popov, I. Meglinski, Cells 9, 545 (2020)

    Article  Google Scholar 

  25. M. Dienerowitz, M. Mazilu, K. Dholakia, J. Nanophoton. 2, 021875 (2008)

    Article  Google Scholar 

  26. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C.T. Lim, C.W. Qiu, Light Sci. Appl. 6, e17039 (2017)

    Article  ADS  Google Scholar 

  27. J.E. Melzer, E. McLeod, ACS Nano 12, 2440 (2018)

    Article  Google Scholar 

  28. D.G. Kotsifaki, S.N. Chormaic, Nanophotonics 8, 1227 (2019)

    Article  Google Scholar 

  29. D. Choudhary, A. Mossa, M. Jadhav, C. Cecconi, Biomolecules 9, 23 (2019)

    Article  Google Scholar 

  30. D.G. Grier, Nature 424, 810 (2003)

    Article  ADS  Google Scholar 

  31. M. Daly, M. Sergides, N.S. Chormaic, Laser Photon. Rev. 9, 309 (2015)

    Article  ADS  Google Scholar 

  32. P.A. Maia Neto, H.M. Nussenzweig, EPL 50, 702 (2000)

    Article  ADS  Google Scholar 

  33. S.E.S. Spesyvtseva, K. Dholakia, ACS Photon. 3, 719 (2016)

    Article  Google Scholar 

  34. E. Almaas, I. Brevik, J. Opt. Soc. Am. B 12, 2429 (1995)

    Article  ADS  Google Scholar 

  35. M. Gu, J.-B. Haumonte, Y. Micheau, J.W.N. Chon, X. Gan, Appl. Phys. Lett. 84, 4236 (2004)

    Article  ADS  Google Scholar 

  36. D. Ganic, X. Gan, M. Gu, Opt. Express 12, 5533 (2004)

    Article  ADS  Google Scholar 

  37. Y.Z. Yoon, P. Cicuta, Opt. Express 18, 7076 (2010)

    Article  ADS  Google Scholar 

  38. Y. Xiang, X. Tang, C. Min, G. Rui, Y. Kuai, F. Lu, P. Wanf, H. Ming, Q. Zhan, X. Yuan, J.R. Lakowicz, D. Zhang, Ann. Phys. 532, 1900497 (2020)

    Article  Google Scholar 

  39. S.E. Skelton, M. Sergides, R. Patel, E. Karczewska, O.M. Maragó, P.H. Jones, J. Quant. Spectrosc. Radiat. Transfer 118, 2512 (2012)

    Article  ADS  Google Scholar 

  40. M.C. Frawley, I. Gusachenko, V.G. Truong, M. Sergides, S.N. Chormaic, Opt. Express 22, 16322 (2014)

    Article  ADS  Google Scholar 

  41. O. Emile, J. Emile, H. Tabuteau, EPL 116, 64003 (2017)

    Article  ADS  Google Scholar 

  42. S. Hu, Z.W. Liao, L. Cai, X.X. Jiang, Phys. Status Solidi 217, 1900604 (2019)

    Article  ADS  Google Scholar 

  43. M.L. Juan, M. Righini, R. Quidant, Nat. Photon. 5, 349 (2011)

    Article  ADS  Google Scholar 

  44. Y.F. Chen, X. Serey, R. Sarkar, P. Chen, D. Erickson, Nano Lett. 12, 1633 (2012)

    Article  ADS  Google Scholar 

  45. J.S. Huang, Y.T. Yang, Nanomaterials 5, 1048 (2015)

    Article  Google Scholar 

  46. Z. Xu, K.B. Crozier, Opt. Express 27, 4034 (2019)

    Article  ADS  Google Scholar 

  47. Z. Hu, J. Wang, J. Liang, Opt. Express 12, 4123 (2004)

    Article  ADS  Google Scholar 

  48. J.-B. Decombe, S. Huant, J. Fick, Opt. Express 21, 30521 (2013)

    Article  ADS  Google Scholar 

  49. A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, H. Sterl, A.M. Herkommer, H. Giessen, J. Fick, ACS Photon. 7, 88 (2020)

    Article  Google Scholar 

  50. X. Zhao, N. Zhao, Y. Shi, H. Xin, B. Li, Micromachines 11, 114 (2020)

    Article  Google Scholar 

  51. M.P. MacDonald, G.C. Spalding, K. Dholakia, Nature 426, 421 (2003)

    Article  ADS  Google Scholar 

  52. M. Woerdemann, C. Alpmann, M. Esseling, C. Denz, Laser Photon. Rev. 7, 839 (2013)

    Article  ADS  Google Scholar 

  53. H. Rubinsztein-Dunlop, A. Forbes, M.V. Berry, M.R. Dennis, D.L. Andrews, M.J. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N.M. Litchinitser, N.P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J.P. Torres, T.W. Neely, M. Baker, R. Gordon, A.B. Stilgoe, J. Romero, A.G. White, R. Fickler, A.E. Willner, G. Xie, B. McMorran, A.M. Weiner, J. Opt. 19, 013001 (2016)

    Article  ADS  Google Scholar 

  54. O. Emile, J. Emile, H. Tabuteau, EPL 129, 58001 (2020)

    Article  ADS  Google Scholar 

  55. E. Hecht, Optics (Addison-Wesley, San Fransisco, 2001)

  56. T.M. Squires, R.S. Quake, Rev. Mod. Phys. 77, 977 (2005)

    Article  ADS  Google Scholar 

  57. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)

    Article  Google Scholar 

  58. O. Emile, J. Emile, Appl. Opt. 59, 1678 (2020)

    Article  ADS  Google Scholar 

  59. A.E. Siegman, Lasers (University Science Books, Sausalito CA, 1986)

  60. A. Le Floch, O. Emile, G. Ropars, G. Agrawal, Sci. Rep. 7, 9083 (2017)

    Article  ADS  Google Scholar 

  61. A. Yildiz, J.N. Forkey, S.A. McKinney, T. Ha, Y.E. Goldman, P.R. Selvin, Science 300, 2061 (2003)

    Article  ADS  Google Scholar 

  62. J. Vangindertael, R. Camacho, W. Sempels, H. Mizuno, P. Dedecker, K.P.F. Janssen, Methods Appl. Fluoresc. 6, 022003 (2018)

    Article  ADS  Google Scholar 

  63. Y. Harada, T. Asakura, Opt. Commun. 124, 529 (1996)

    Article  ADS  Google Scholar 

  64. A. Jonáš, P. Zemanek, Electrophoresis 29, 4813 (2008)

    Article  Google Scholar 

  65. B.K. Singh, H. Nagar, Y. Roichman, A. Arie, Light Sci. Appl. 6, e17050 (2017)

    Article  ADS  Google Scholar 

  66. H. Nagar, T. Admon, D. Goldman, A. Eyal, Y. Roichman, Opt. Lett. 44, 2430 (2019)

    Article  ADS  Google Scholar 

  67. www.thermofisher.com

  68. S.W. Hell, J. Wichmann, Opt. Lett. 19, 780 (1994)

    Article  ADS  Google Scholar 

  69. S.W. Hell, Science 316, 1153 (2007)

    Article  ADS  Google Scholar 

  70. M.R. Eftink, Fluorescence quenching, in Topics in Fluorescence Spectroscopy, edited by J.R. Lakowicz (Kluwer Academic Publishers, Dordrecht, 1992) p. 53

  71. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979)

  72. G. Vigil, Z. Xu, S. Steinberg, J. Israelachvili, J. Colloid Interface Sci. 165, 367 (1994)

    Article  ADS  Google Scholar 

  73. J.T. Verdeyen, Laser Electronics, 3rd edition (Prentice Hall, New York, 2001)

  74. A. Einstein, Verh. Dtsch. Phys. Ges. 18, 318 (1916)

    Google Scholar 

  75. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions, Basic Processes and Applications (Wiley-VCH, 1998)

  76. O. Emile, T. Galstyan, A. Le Floch, F. Bretenaker, Phys. Rev. Lett. 75, 1511 (1995)

    Article  ADS  Google Scholar 

  77. D. Braun, A. Libchaber, Phys. Rev. Lett. 89, 188103 (2002)

    Article  ADS  Google Scholar 

  78. A. Parola, R. Piazza, Eur. Phys. J. E 15, 255 (2004)

    Article  Google Scholar 

  79. S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103, 19678 (2006)

    Article  ADS  Google Scholar 

  80. F.W. Sears, H.D. Young, M.W. Zemansky, University Physics, 7th edition (Addison-Wesley, Reading, 1987)

  81. M. Braibanti, D. Vigolo, R. Piazza, Phys. Rev. Lett. 100, 108303 (2008)

    Article  ADS  Google Scholar 

  82. S. Michelin, E. Lauga, Eur. Phys. J. E 38, 7 (2015)

    Article  Google Scholar 

  83. H. Moyses, J. Palacci, S. Sacanna, D.G. Grier, Soft Matter 12, 6357 (2016)

    Article  ADS  Google Scholar 

  84. C. Shen, H.D. Ou-Yang, Optical Trapping and Optical Micromanipulation XVI, Proc. SPIE, Vol. 11083 (SPIE, 2019)

  85. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, ACS Nano 4, 3591 (2010)

    Article  Google Scholar 

  86. N. Vogel, M. Retsch, C.A. Fustin, A. del Campo, U. Jonas, Chem. Rev. 115, 6265 (2015)

    Article  Google Scholar 

  87. Y. Brasse, V. Gupta, H.T. Schollbach, M. Karg, T.A. König, A. Fery, Adv. Mater. Interfaces 7, 1901678 (2020)

    Article  Google Scholar 

  88. S. Ghosh, A. Ghosh, Langmuir 36, 5691 (2020)

    Article  Google Scholar 

  89. M. Villangca, D. Casey, J. Glückstad, Biophys. Rev. 7, 379 (2015)

    Article  Google Scholar 

  90. B.P. Nadappuram, P. Cadinu, A. Barik, A.J. Ainscough, M.J. Devine, M. Kang, J. Gonzalez-Garcia, J.T. Kittler, K.R. Willison, R. Vilar, P. Actis, B. Wojciak-Stothard, S.-H. Oh, A.P. Ivanov, J.B. Edel, Nat. Nanotechnol. 14, 80 (2019)

    Article  ADS  Google Scholar 

  91. H. Zeng, P. Wasylczyk, D.S. Wiersma, A. Priimagi, Adv. Mater. 30, 1703554 (2018)

    Article  Google Scholar 

  92. I. Shishkin, H. Markovich, Y. Roichman, P. Ginzburg, Micromachines 11, 90 (2020)

    Article  Google Scholar 

  93. W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  94. O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, A. Clairon, Europhys. Lett. 20, 687 (1992)

    Article  ADS  Google Scholar 

  95. D.J. McCarron, E.B. Norrgard, M.H. Steinecker, D. DeMille, New J. Phys. 17, 035014 (2015)

    Article  ADS  Google Scholar 

  96. H. Ohadi, M. Himsworth, A. Xuereb, T. Freegarde, Opt. Express 17, 23003 (2009)

    Article  ADS  Google Scholar 

  97. E.A. Bur, R.W. Ghrist, J.C. Myatt, M.J. Holland, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 79, 337 (1998)

    Article  ADS  Google Scholar 

  98. M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Emile.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emile, O., Emile, J. Nanometer optical trap based on stimulated emission in evanescence of a totally reflected Arago spot. Eur. Phys. J. E 43, 68 (2020). https://doi.org/10.1140/epje/i2020-11991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11991-6

Keywords

Navigation