Skip to main content
Log in

Charge regulation of a surface immersed in an electrolyte solution

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper, we investigate theoretically a model of charge regulation of a single charged planar surface immersed in an aqueous electrolyte solution. Assuming that the adsorbed ions are mobile in the charged plane, we formulate a field theory of charge regulation where the numbers of adsorbed ions can be determined consistently by equating the chemical potentials of the adsorbed ions to that of the ions in the bulk. We analyze the mean-field treatment of the model for electrolyte of arbitrary valences, and then beyond, where correlation effects are systematically taken into account in a loop expansion. In particular, we compute exactly various one-loop quantities, including electrostatic potentials, ion distributions, and chemical potentials, not only for symmetric (1, 1) electrolyte but also for asymmetric (2, 1) electrolyte, and make use of these quantities to address charge regulation at the one-loop level. We find that correlation effects give rise to various phase transitions in the adsorption of ions, and present phase diagrams for (1, 1) and (2, 1) electrolytes, whose distinct behaviors suggest that charge regulation, at the one-loop level, is no longer universal but depends crucially on the valency of the ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press Inc., San Diego, 1992)

  2. S. Durand-Vidal, J.P. Simonin, D. Turq, Electrolytes at Interfaces (Kluwer, Dordrecht, 2000)

  3. D. Andelman, in Handbook of Biological Physics, Vol. 1, edited by R. Lipowsky, E. Sackmann (Elsevier, Amsterdam, 1995) Chapt. 12

  4. Yan Levin, Rep. Prog. Phys. 65, 1577 (2002)

    Article  ADS  Google Scholar 

  5. P. Attard, J. Phys. Chem. 99, 14174 (1995)

    Article  Google Scholar 

  6. A.G. Moreira, Roland R. Netz, in Electrostatic Effects in Soft Matter and Biophysics, edited by C. Holm, P. Kekicheff, R. Podgornik (Kluwer, Boston, 2001)

  7. A.Y. Grosberg, T.T. Nguyen, B.I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002)

    Article  ADS  Google Scholar 

  8. A.W.C. Lau, Phys. Rev. E 77, 011502 (2008)

    Article  ADS  Google Scholar 

  9. T. Markovich, D. Andelman, R. Podgornick, EPL 106, 16002 (2014)

    Article  ADS  Google Scholar 

  10. T. Markovich, D. Andelman, R. Podgornick, J. Chem. Phys. 142, 044702 (2015)

    Article  ADS  Google Scholar 

  11. T. Markovich, D. Andelman, R. Podgornick, Langmuir 33, 34 (2017)

    Article  Google Scholar 

  12. T. Markovich, D. Andelman, H. Orland, J. Chem. Phys. 145, 134704 (2016)

    Article  ADS  Google Scholar 

  13. R. Messina, J. Phys.: Condens. Matter 21, 113102 (2009)

    ADS  Google Scholar 

  14. L. Guldbrand, B. Jönsson, H. Wennerström, P. Linse, J. Chem. Phys. 80, 2221 (1984)

    Article  ADS  Google Scholar 

  15. G.M. Kepler, S. Fraden, Phys. Rev. Lett. 73, 356 (1994)

    Article  ADS  Google Scholar 

  16. J.C. Butler, T. Angelini, J.X. Tang, G.C.L. Wong, Phys. Rev. Lett. 91, 028301 (2003)

    Article  ADS  Google Scholar 

  17. D. Grier, Y. Han, J. Phys.: Condens. Matter 16, S4145 (2004)

    ADS  Google Scholar 

  18. A.R. Saito, M.C. Parez, J.S. Solano, J.L.A. Lara, Phys. Rev. E 67, 050403 (2003)

    Article  Google Scholar 

  19. R.M. Pashley, J. Colloid Interf. Sci. 83, 531 (1981)

    Article  ADS  Google Scholar 

  20. P. Sinha, I. Szilagyi, F. Javier, M.R. Cabello, P. Maroni, M. Borkovec, J. Phys. Chem. 4, 648 (2013)

    Google Scholar 

  21. F.J. Montes, M.R. Cabello, G. Trefalt, P. Maroni, M. Borkovec, Langmuir 30, 4451 (2014)

    Google Scholar 

  22. I. Popa, P. Sinha, M. Finessi, P. Maroni, G. Papastavrou, M. Borkovec, Phys. Rev. Lett. 104, 228301 (2010)

    Article  ADS  Google Scholar 

  23. D. Ebeling, D. Ende, F. Mugele, Nanotechnology 22, 305706 (2011)

    Article  Google Scholar 

  24. M. Dishon, O. Zohar, U. Sivan, Langmuir 25, 2831 (2009)

    Article  Google Scholar 

  25. G.L. Gouy, J. Phys. Radium 9, 457 (1910)

    Google Scholar 

  26. D. Champan, Philos. Mag. Sixth Ser. 25, 475 (1913)

    Article  Google Scholar 

  27. B.W. Ninham, V.A. Parsegian, J. Theor. Biol. 31, 405 (1971)

    Article  Google Scholar 

  28. D.Y.C. Chan, T.W. Healy, L.R. White, J. Chem. Soc., Faraday Trans. I 72, 2844 (1976)

    Article  Google Scholar 

  29. N. Boon, R. Roij, J. Chem. Phys. 134, 054706 (2011)

    Article  ADS  Google Scholar 

  30. R. Podgornik, J. Chem. Phys. 149, 104701 (2018)

    Article  ADS  Google Scholar 

  31. J. Lyklema, Pure Appl. Chem. 63, 895 (1991)

    Article  Google Scholar 

  32. See, for example, M.C. Desjonqueres, D. Spanjaard, Concepts in Surface Physics, 2nd edition (Springer, New York, 1996)

  33. D. Harries, R. Podgornik, V.A. Parsegian, E. May-Or, D. Andelman, J. Chem. Phys. 124, 224702 (2006)

    Article  ADS  Google Scholar 

  34. A. Majee, M. Bier, R. Podgornik, Soft Matter 14, 985 (2018)

    Article  ADS  Google Scholar 

  35. A. Majee, M. Bier, R. Blossey, R. Podgornik, Phys. Rev. E 100, 050601(R) (2019)

    Article  ADS  Google Scholar 

  36. N. Adzic, R. Podgornik, Eur. Phys. J. E 37, 49 (2014)

    Article  Google Scholar 

  37. N. Adzic, R. Podgornik, J. Chem. Phys. 144, 214901 (2016)

    Article  ADS  Google Scholar 

  38. N. Adzic, R. Podgornik, Phys. Rev. E 91, 022715 (2015)

    Article  ADS  Google Scholar 

  39. I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916)

    Article  Google Scholar 

  40. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

    Article  Google Scholar 

  41. R.H. Fowler, E.A. Guggenheim, Statistical Thermodynamics (University Press, Cambridge, 1939)

  42. B.S. Lu, X. Xing, Phys. Rev. E 89, 032305 (2014)

    Article  ADS  Google Scholar 

  43. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  44. R.L. Stratonovitch, Dokl. Akad. Nauk USSR 115, 1907 (1957)

    Google Scholar 

  45. See, for example, A.W.C. Lau, PhD Thesis, University of California, Santa Barbara (2000)

  46. D.C. Grahame, J. Chem. Phys. 21, 1054 (1953)

    Article  ADS  Google Scholar 

  47. Luc Belloni, Colloids Surf. A 140, 227 (1998)

    Article  Google Scholar 

  48. A.W.C. Lau, D.B. Lukatsky, P. Pincus, S.A. Safran, Phys. Rev. E 65, 051502 (2002)

    Article  ADS  Google Scholar 

  49. A. Thomy, X. Duval, J. Regnier, Surf. Sci. Rep. 1, 1 (1981)

    Article  ADS  Google Scholar 

  50. R.H. Fowler, Proc. Camb. Philos. Soc. 32, 144 (1935)

    Article  ADS  Google Scholar 

  51. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd ed. (Pergamon, New York, 1980).

  52. J.W. Evans, Rev. Mod. Phys. 65, 1281 (1993)

    Article  ADS  Google Scholar 

  53. K.V. Tretiakov, K.J.M. Bishop, B. Kowalczyk, A. Jaiswal, M.A. Poggi, B.A. Grzybowski, J. Phys. Chem. A 113, 3799 (2009)

    Article  Google Scholar 

  54. Joseph Lajzerowicz, Jean Sivardiere, Phys. Rev. A 11, 2019 (1975)

    Google Scholar 

  55. R. Evans, Adv. Phys. 28, 143 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. C. Lau.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, P., Lau, A.W.C. Charge regulation of a surface immersed in an electrolyte solution. Eur. Phys. J. E 43, 54 (2020). https://doi.org/10.1140/epje/i2020-11978-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11978-3

Keywords

Navigation