Skip to main content
Log in

A stochastic model for dynamics of FtsZ filaments and the formation of Z -ring

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Understanding the mechanisms responsible for the formation and growth of FtsZ polymers and their subsequent formation of the Z -ring is important for gaining insight into the cell division in prokaryotic cells. In this work, we present a minimal stochastic model that qualitatively reproduces in vitro observations of polymerization, formation of dynamic contractile ring that is stable for a long time and depolymerization shown by FtsZ polymer filaments. In this stochastic model, we explore different mechanisms for ring breaking and hydrolysis. In addition to hydrolysis, which is known to regulate the dynamics of other tubulin polymers like microtubules, we find that the presence of the ring allows for an additional mechanism for regulating the dynamics of FtsZ polymers. Ring breaking dynamics in the presence of hydrolysis naturally induce rescue and catastrophe events in this model irrespective of the mechanism of hydrolysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Bi, J. Lutkenhaus, Nature 354, 161 (1991)

    ADS  Google Scholar 

  2. A. Mukherjee, J. Lutkenhaus, J. Bacteriol. 176, 2754 (1994)

    Google Scholar 

  3. H.P. Erickson, Cell 80, 367 (1995)

    Google Scholar 

  4. J.A. Buss, N.T. Peters, J. Xiao, T.G. Bernhardt, Mol. Microbiol. 104, 652 (2017)

    Google Scholar 

  5. M.A. Schumacher, K.-H. Huang, W. Zeng, A. Janakiraman, J. Biol. Chem. 292, 3740 (2017)

    Google Scholar 

  6. K.M. Schoenemann, W. Margolin, Curr. Biol. 27, R301 (2017)

    Google Scholar 

  7. J. Xiao, E.D. Goley, Curr. Opin. Microbiol. 34, 90 (2016)

    Google Scholar 

  8. X. Yang, Z. Lyu, A. Miguel, R. McQuillen, K.C. Huang, J. Xiao, Science 355, 744 (2017)

    ADS  Google Scholar 

  9. A.W. Bisson-Filho, Y.-P. Hsu, G.R. Squyres, E. Kuru, F. Wu, C. Jukes, Y. Sun, C. Dekker, S. Holden, M.S. Van Nieuwenhze, Y.V. Brun, E.C. Garner, Science 355, 739 (2017)

    ADS  Google Scholar 

  10. M. Loose, T.J. Mitchison, Nat. Cell Biol. 16, 38 (2014)

    Google Scholar 

  11. D.A. Ramirez-Diaz, D. Garcia-Soriano, A. Raso, M. Feingold, G. Rivas, P. Schwille, PLoS Biol. 16, e2004845 (2018)

    Google Scholar 

  12. P. Mateos-Gil, A. Paez, I. Hörger, G. Rivas, M. Vicente, P. Tarazona, M. Velez, Proc. Natl. Acad. Sci. U.S.A. 109, 8133 (2012)

    ADS  Google Scholar 

  13. X. Ma, W. Margolin, J. Bacteriol. 181, 7531 (1999)

    Google Scholar 

  14. P.J. Buske, P.A. Levin, Mol. Microbiol. 89, 249 (2013)

    Google Scholar 

  15. M. Osawa, D.E. Anderson, H.P. Erickson, EMBO J. 17, 462 (1998)

    Google Scholar 

  16. L. Romberg, M. Simon, H.P. Erickson, J. Biol. Chem. 276, 11743 (2001)

    Google Scholar 

  17. L. Romberg, T.J. Mitchison, Biochemistry 43, 282 (2004)

    Google Scholar 

  18. M.A. Oliva, S.C. Cordell, J. Lowe, Nat. Struct. Mol. Biol. 11, 1243 (2004)

    Google Scholar 

  19. D.J. Scheffers, J.G. de Wit, T. den Blaauwen, A.J. Driessen, Biochemistry 41, 521 (2002)

    Google Scholar 

  20. S. Huecas, J.M. Andreu, FEBS Lett. 569, 43 (2004)

    Google Scholar 

  21. Y. Chen, K. Bjornson, S.D. Redick, H.P. Erickson, Biophys. J. 88, 505 (2005)

    ADS  Google Scholar 

  22. J.M. Gonzalez, M. Jimenez, M. Velez, J. Mingorance, J.M. Andreu, M. Vicente, G. Rivas, J. Biol. Chem. 278, 37664 (2003)

    Google Scholar 

  23. M.R. Caplan, H.P. Erickson, J. Biol. Chem. 278, 13784 (2003)

    Google Scholar 

  24. X.C. Yu, W. Margolin, EMBO J. 16, 5455 (1997)

    Google Scholar 

  25. S. Du, S. Pichoff, K. Kruse, J. Lutkenhaus, Proc. Natl. Acad. Sci. U.S.A. 115, 10768 (2018)

    Google Scholar 

  26. D.A. Ramirez-Diaz, D. Garcia-Soriano, A. Raso, M. Feingold, G. Rivas, P. Schwille, Biophys. J. 112, 133 (2017)

    ADS  Google Scholar 

  27. J. Denk, L. Huber, E. Reithmann, E. Frey, Phys. Rev. Lett. 116, 178301 (2016)

    ADS  Google Scholar 

  28. J.M. Wagstaff, M. Tsim, M.A. Oliva, A. Garcìa-Sanchez, D. Kureisaite-Ciziene, J.M. Andreu, J. Löwe, mBio 8, e00254 (2017)

    Google Scholar 

  29. D. RayChaudhuri, EMBO J. 18, 2372 (1999)

    Google Scholar 

  30. A. Mukherjee, J. Lutkenhaus, EMBO J. 17, 462 (1998)

    Google Scholar 

  31. J. Mingorance, M. Tadros, M. Vicente, J.M. Gonzalez, G. Rivas, M. Velez, J. Biol. Chem. 280, 20909 (2005)

    Google Scholar 

  32. A. Páez, P. Tarazona, P. Mateos-Gil, M. Velez, Soft Matter. 5, 2625 (2009)

    Google Scholar 

  33. K.E. Sawin, K. LeGuellec, M. Philippe, T.J. Mitchison, Nature 359, 540 (1992)

    ADS  Google Scholar 

  34. T.L. Hill, Proc. Natl. Acad. Sci. U.S.A. 81, 6728 (1984)

    ADS  Google Scholar 

  35. H. Flyvbjerg, T.E. Holy, S. Leibler, Phys. Rev. Lett. 73, 2372 (1994)

    ADS  Google Scholar 

  36. P.M. Bayley, M.J. Schilstra, S.R. Martin, J. Cell Sci. 95, 33 (1990)

    Google Scholar 

  37. D. Vavylonis, Q. Yang, B. O’Shaughnessy, Proc. Natl. Acad. Sci. U.S.A. 102, 8543 (2005)

    ADS  Google Scholar 

  38. E.B. Stukalin, A.B. Kolomeisky, Biophys. J. 90, 2673 (2006)

    ADS  Google Scholar 

  39. M. Dogterom, S. Leibler, Phys. Rev. Lett. 70, 1347 (1993)

    ADS  Google Scholar 

  40. T. Antal, P.L. Krapivsky, S. Redner, M. Mailman, B. Chakraborty, Phys. Rev. E 76, 041907 (2007)

    ADS  Google Scholar 

  41. M.F. Sumedha Hagan, B. Chakraborty, Phys. Rev. E 83, 051904 (2011)

    ADS  Google Scholar 

  42. H. Bowne-Anderson, M. Zanic, M. Kauer, J. Howard, BioEssays 35, 452 (2013)

    Google Scholar 

  43. E.B. Stukalin, A.B. Kolomeisky, Biophys. J. 90, 2673 (2006)

    ADS  Google Scholar 

  44. P. Renjith, K. Mallick, J.F. Joanny, D. Lacoste, Biophys. J. 98, 1418 (2010)

    ADS  Google Scholar 

  45. J. Howard, K.G. Kozminski, J. Lippincott-Schwartz, Mol. Biol. Cell 25, 3438 (2017)

    Google Scholar 

  46. I. Horger, E. Velasco, J. Mingorance, G. Rivas, P. Tarazona, M. Velez, Phys. Rev. E 77, 011902 (2008)

    ADS  Google Scholar 

  47. A. Paez, P. Mateos-Gil, I. Hörger et al., PMC Biophys. 2, 8 (2009)

    Google Scholar 

  48. P. Gonzalez de Prado Salas, I. Horger, F. Martin-Garcia et al., Soft Matter 10, 1977 (2014)

    ADS  Google Scholar 

  49. P. González de Prado Salas, P. Tarazona, Phys. Rev. E 93, 042407 (2016)

    ADS  Google Scholar 

  50. Y. Chen, H.P. Erickson, J. Biol. Chem. 280, 22549 (2005)

    Google Scholar 

  51. Y. Chen, K. Bjornson, S.D. Redick, H.P. Erickson, Biophys. J. 88, 505 (2005)

    ADS  Google Scholar 

  52. C.E. Dow, A. Rodger, D.I. Roper, H.A. van den Berg, Integr. Biol. 5, 778 (2013)

    Google Scholar 

  53. G. Lan, A. Dajkovic, D. Wirtz, S.X. Sun, Biophys. J. 95, 4045 (2008)

    ADS  Google Scholar 

  54. I.V. Surovtsev, J.J. Morgan, P.A. Lindahl, PLoS Comput. Biol. 4, e1000102 (2008)

    ADS  Google Scholar 

  55. A. Ruiz-Martinez, T.M. Bartol, T.J. Sejnowski, D.M. Tartakovsky, Biophys. J. 110, 185 (2016)

    Google Scholar 

  56. A. Ruiz-Martinez, T.M. Bartol, T.J. Sejnowski, D.M. Tartakovsky, Proc. Natl. Acad. Sci. U.S.A. 115, 4933 (2018)

    Google Scholar 

  57. E. Fischer-Friedrich, N. Gov, Phys. Biol. 8, 026007 (2011)

    ADS  Google Scholar 

  58. E. Fischer-Friedrich, B.M. Friedrich, N. Gov, Phys. Biol. 9, 016009 (2011)

    ADS  Google Scholar 

  59. P.M. Gil, P. Tarazona, M. Velez, FEMS Microbiol. Rev. 43, 73 (2019)

    Google Scholar 

  60. Z. Li, M.J. Trimble, Y.v. Brun, G.J. Jensen, EMBO J. 26, 4694 (2007)

    Google Scholar 

  61. M. Osawa, D.E. Anderson, H.P. Erickson, EMBO J. 28, 3476 (2009)

    Google Scholar 

  62. E. Small, S.G. Addinall, Microbiology 149, 2235 (2003)

    Google Scholar 

  63. J. Mingorance, S. Rueda, P. Gomez-Puertas, A. Valencia, M. Vicente, Mol. Microbiol. 41, 83 (2001)

    Google Scholar 

  64. J.M. Gonzalez, M. Velez, M. Jimenez, C. Alfonso, P. Schuck, J. Mingorance, M. Vicente, A.P. Minton, G. Rivas, Proc. Natl. Acad. Sci. U.S.A. 102, 1895 (2005)

    ADS  Google Scholar 

  65. D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)

    Google Scholar 

  66. D.T. Gillepsie, Annu. Rev. Phys. Chem. 58, 35 (2007)

    ADS  Google Scholar 

  67. W. Margolin, Nat. Rev. Mol. Cell Biol. 6, 862 (2005)

    Google Scholar 

  68. T. Heams, Math. Struct. Comput. Sci. 24, e240308 (2014)

    MathSciNet  Google Scholar 

  69. S. Ditlevsen, A. Samson, Introduction to Stochastic Models in Biology, in Stochastic Biomathematical Models, edited by M. Bachar, J. Batzel, S. Ditlevsen, Lect. Notes Math., Vol. 2058 (Springer, Berlin, Heidelberg, 2013) pp. 3--34

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumedha.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, A., Anil Kumar, A.V. & Sumedha A stochastic model for dynamics of FtsZ filaments and the formation of Z -ring. Eur. Phys. J. E 43, 43 (2020). https://doi.org/10.1140/epje/i2020-11967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11967-6

Keywords

Navigation