Skip to main content
Log in

Magnetic, structural and cation distribution studies on \(\mathrm{FeO}\cdot\mathrm{Fe}_{(2-x)}\mathrm{Nd}_{x} \mathrm{O_{3}}\) (x = 0.00, 0.02, 0.04, 0.06 and 0.1) nanoparticles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We synthesized and characterized the colloidal suspensions of \(\mathrm{FeO}\cdot\mathrm{Fe}_{(2-x)}\mathrm{Nd}_{x} \mathrm{O_{3}}\) nanoparticles with x = 0.00, 0.02, 0.04, 0.06 and 0.1. The effect of the Fe3+ ion replacement by Nd3+ on the crystal structure is in-depth studied. The samples were characterized by the following techniques: X-ray diffraction (XRD), UV-Vis spectrophotometry, transmission electronic microscopy (TEM), small-angle X-ray scattering (SAXS), magnetization as a function of applied magnetic field (M-H loops) and magnetization as a function of temperature in zero-field-cooled and field-cooled regimes (ZFC-FC). From XRD cation distribution, structural parameters were extracted. The increasing in the bandgap is interpreted as a result of the higher interatomic separation with the doping. TEM micrographs reveal a polydisperse size and shape distribution of particles. The results for the volume-weighted average diameter measured by SAXS are consistent with those determined by XRD. From the M-H loops we found that the superparamagnetic (SPM) regime contributes with 95-97% for all samples, while only 3-5% contribution comes from the paramagnetic (PM) regime. The saturation magnetization increases in a steady manner upon increasing the Nd3+ ion molar ratio from 0.00 up to 0.06, reaching the maximum value of 105.8±0.4 Am2/kg at x = 0.06. It is worth to mention that the result for the saturation magnetization value are higher than that of the bulk material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.H.K. Reddy, Y.S. Yun, Coord. Chem. Rev. 315, 90 (2016)

    Google Scholar 

  2. K. Parekh et al., Mater. Chem. Phys. 222, 217 (2019)

    Google Scholar 

  3. L. Shen et al., Ceram. Int. 40, 1519 (2014)

    Google Scholar 

  4. I. Torres-Díaz, C. Rinaldi, Soft Matter 10, 8584 (2014)

    ADS  Google Scholar 

  5. C. Scherer, A.M. Figueiredo Neto, Braz. J. Phys. 35, 718 (2005)

    ADS  Google Scholar 

  6. A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Int. J. Mol. Sci. 14, 15977 (2013)

    Google Scholar 

  7. K. Parekh, L. Almásy, H.S. Lee, R.V. Upadhyay, Appl. Phys. A 106, 223 (2012)

    ADS  Google Scholar 

  8. G.F. Goya et al., J. Appl. Phys. 94, 3520 (2003)

    ADS  Google Scholar 

  9. D.H.G. Espinosa, C.L.P.O. Liveira, A.M. Figueiredo Neto, J. Opt. Soc. Am. B 35, 346 (2018)

    ADS  Google Scholar 

  10. E.A. Elfimova, A.O. Ivanov, P.J. Camp, J. Chem. Phys. 136, 194502 (2012)

    ADS  Google Scholar 

  11. N. Daffe et al., J. Magn. & Magn. Mater. 460, 243 (2018)

    ADS  Google Scholar 

  12. E.S. Gonçalves et al., Phys. Rev. E 91, 042317 (2015)

    ADS  Google Scholar 

  13. J.C. Denardin et al., Phys. Rev. B 65, 064422 (2002)

    ADS  Google Scholar 

  14. R.R. Kanna et al., J. Mater. Sci.: Mater. Electron. 30, 4473 (2019)

    ADS  Google Scholar 

  15. S. Aslam et al., Results Phys. 12, 1334 (2019)

    ADS  Google Scholar 

  16. P.P. Naik, R.B. Tangsali, S.S. Meena, S.M. Yusuf, Mater. Chem. Phys. 191, 215 (2017)

    Google Scholar 

  17. S. Amiri, H. Shokrollani, J. Magn. & Magn. Mater. 345, 18 (2013)

    ADS  Google Scholar 

  18. R. Jain et al., J. Magn. & Magn. Mater. 456, 179 (2018)

    ADS  Google Scholar 

  19. W. Huan et al., J. Nanosci. Nanotechnol. 14, 766 (2014)

    Google Scholar 

  20. W. Tuo, H. Pan, R. Chen et al., J. Rare Earth 34, 71 (2016)

    Google Scholar 

  21. H.T. Khuyen et al., J. Rare Earth 37, 1237 (2019)

    Google Scholar 

  22. A.V. Teixeira et al., Phys. Rev. E 67, 021504 (2003)

    ADS  Google Scholar 

  23. H. Harzali, A. Marzouki, F. Saida, A. Megriche, A. Mgaidi, J. Magn. & Magn. Mater. 460, 89 (2018)

    ADS  Google Scholar 

  24. M.A. Almessiere, J. Rare Earth 37, 1108 (2019)

    Google Scholar 

  25. C.T. Rueden, J. Schindelin, M.C. Hiner et al., BMC Bioinform. 18, 529 (2017)

    Google Scholar 

  26. J.F.D.F. Araujo, A.C. Bruno, S.R.W. Louro, Rev. Sci. Instrum. 86, 105103 (2015)

    ADS  Google Scholar 

  27. S. Arsalani et al., J. Magn. & Magn. Mater. 475, 458 (2019)

    ADS  Google Scholar 

  28. G.D. Gatta, I. Kantor, T.B. Ballaran, L. Dubrovinsky, C. McCammon, Phys. Chem. Miner. 34, 627 (2007)

    ADS  Google Scholar 

  29. K.V. Zipare et al., J. Rare Earths 36, 86 (2018)

    Google Scholar 

  30. A.S. Elkady et al., J. Magn. & Magn. Mater. 385, 70 (2015)

    ADS  Google Scholar 

  31. Georg Will, Powder Diffraction, The Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data (Springer-Verlag, Berlin, Heidelberg, 2006)

  32. L. Lutterotti, Nucl. Instrum. Methods B 268, 334 (2010)

    ADS  Google Scholar 

  33. M. Dalal et al., Mater. Res. Bull. 76, 389 (2016)

    Google Scholar 

  34. Kumar et al., Int. Nano Lett. 3, 8 (2013)

    Google Scholar 

  35. J. Kurian, M. Jacob Mathew, J. Magn. & Magn. Mater. 428, 204 (2017)

    ADS  Google Scholar 

  36. D.V. Kurmude et al., J. Supercond. Nov. Magn. 27, 547 (2014)

    Google Scholar 

  37. Patange et al., J. Appl. Phys. 109, 053909 (2011)

    ADS  Google Scholar 

  38. C.E. Rodríguez Torres et al., Phys. Rev. B 89, 104411 (2014)

    ADS  Google Scholar 

  39. E.F. Bertaut, C.R. Acad. Sci. 230, 213 (1950)

    Google Scholar 

  40. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, Mass., USA, 1978)

  41. A. Najafi Birgani et al., J. Magn. & Magn. Mater. 374, 179 (2015)

    ADS  Google Scholar 

  42. H. Furuhashi, M. Inagaki, S. Naka, J. Inorg. Nucl. Chem. 35, 3009 (1973)

    Google Scholar 

  43. P.J. Brown, A.G. Fox, E.N. Maslen, M.A. O’Keefe, B.T.M. Willis, International Tables for Crystallography, Vol. C (Wiley, 2006) Chapt. 6.1, pp. 554--595

  44. H. Kavas et al., J. Alloy Compd. 479, 49 (2009)

    Google Scholar 

  45. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Google Scholar 

  46. B.B.V.S. Varaprasad, K.V. Ramesh, A. Srinivas, J. Supercond. Nov. Magn. 30, 3523 (2017)

    Google Scholar 

  47. D. Espinosa, E.S. Gonçalves, A.M. Figueiredo Neto, J. Appl. Phys. 121, 043103 (2017)

    ADS  Google Scholar 

  48. M. Dongol et al., Optik 126, 1352 (2015)

    ADS  Google Scholar 

  49. D. Espinosa, L.B. Carlsson, A.M. Figueiredo Neto, S. Alves, Phys. Rev. E 88, 032302 (2013)

    ADS  Google Scholar 

  50. W.F.J. Fontijn, P.J. van der Zaag, L.F. Feiner, R. Metselaar, M.A.C. Devillers, J. Appl. Phys. 85, 5100 (1999)

    ADS  Google Scholar 

  51. W.F.J. Fontijn, P.J. Van der Zaag, M.A.C. Devillers, V.A.M. Brabers, R. Metselaar, Phys. Rev. B 56, 5432 (1997)

    ADS  Google Scholar 

  52. P.J. van der Zaag, W.F.J. Fontijn, P. Gaspard, R.M. Wolf, V.A.M. Brabers, R.J.M. van de Veerdonk, P.A.A. van der Heijden, J. Appl. Phys. 79, 5936 (1996)

    ADS  Google Scholar 

  53. J. Anghel, A. Thurber, D.A. Tenne, C.B. Hanna, A. Punnoose, J. Appl. Phys. 107, 09E314 (2010)

    Google Scholar 

  54. Thurber et al., Phys. Rev. B 76, 165206 (2007)

    ADS  Google Scholar 

  55. W. Luo, S.R. Nagel, T.F. Rosenbaum, R.E. Rosensweig, Phys. Rev. Lett. 67, 2721 (1991)

    ADS  Google Scholar 

  56. L.A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press, New York, 1987)

    Google Scholar 

  57. M. El-Hilo, J. Appl. Phys. 112, 103915 (2012)

    ADS  Google Scholar 

  58. Tamion et al., Appl. Phys. Lett. 95, 062503 (2009)

    ADS  Google Scholar 

  59. D. Caruntu, G. Caruntu, C.J. O’Connor, J. Phys. D: Appl. Phys. 40, 5801 (2007)

    ADS  Google Scholar 

  60. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Phys. Rev. B 54, 9288 (1996)

    ADS  Google Scholar 

  61. G. Goya, T. Berquó, F. Fonseca, J. Appl. Phys. 94, 3520 (2003)

    ADS  Google Scholar 

  62. I. Sosnowska, R. Przeniosto, P. Fischer, J. Magn. & Magn. Mater. 160, 384 (1996)

    ADS  Google Scholar 

  63. L. Tauxe, H. Neal Bertram, C. Seberino, Geochem. Geophys. Geosyst. 3, 1055 (2002)

    ADS  Google Scholar 

  64. M. Graeser, K. Bente, T.M. Buzug, J. Phys. D: Appl. Phys. 48, 275001 (2015)

    ADS  Google Scholar 

  65. R.S. Yadav et al., J. Magn. & Magn. Mater. 399, 109 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. W. R. Araujo.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, W.W.R., Araujo, J.F.D.F., Oliveira, C.L.P. et al. Magnetic, structural and cation distribution studies on \(\mathrm{FeO}\cdot\mathrm{Fe}_{(2-x)}\mathrm{Nd}_{x} \mathrm{O_{3}}\) (x = 0.00, 0.02, 0.04, 0.06 and 0.1) nanoparticles. Eur. Phys. J. E 42, 153 (2019). https://doi.org/10.1140/epje/i2019-11917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11917-5

Keywords

Navigation