Skip to main content
Log in

On the thermodiffusion effect in vertical plate heat exchangers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The subject of the transport phenomena has a pivotal role in the performance of aqueous lithium bromide falling film absorbers. Although the thermodiffusion phenomenon appears inside the solution, very little is known about its influence on the mass transport. This study numerically analyses the influence of the thermal mass transfer mechanism on a vertical plate-type heat exchanger for different Reynolds numbers (\( 14\leq {\rm Re} \leq 150\)). Results indicate that, in general, the mass transfer caused by the temperature gradient enhances the total absorption because of the negative Soret coefficient of the salt solution. This improvement is found to be higher at higher Reynolds numbers. Furthermore, the concentration and temperature profiles and, therefore, the absorption change significantly along the flow length. Overall, this analysis assists the understanding of the role of the thermal mechanism in this type of absorbers and it demonstrates that it should be considered in future studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Kesicki, A. Yanagisawa, Energy Effic. 8, 155 (2014)

    Article  Google Scholar 

  2. C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Renew. Sustain. Energy Rev. 57, 1568 (2016)

    Article  Google Scholar 

  3. P. Donnellan, K. Cronin, E. Byrne, Renew. Sustain. Energy Rev. 42, 1290 (2015)

    Article  Google Scholar 

  4. A.B. Little, S. Garimella, Energy 36, 4492 (2011)

    Article  Google Scholar 

  5. I. Horuz, B. Kurt, Renew. Energy 35, 2175 (2010)

    Article  Google Scholar 

  6. A. Beutler, I. Greiter, A. Wagner, L. Hoffmann, S. Schreier, G. Alefeld, Int. J. Refrig. 19, 342 (1996)

    Article  Google Scholar 

  7. J.D. Killion, S. Garimella, Int. J. Refrig. 24, 755 (2001)

    Article  Google Scholar 

  8. J. Ibarra-Bahena, R.J. Romero, L. Velazquez-Avelar, C.V. Valdez-Morales, Y.R. Galindo-Luna, Exp. Therm. Fluid Sci. 51, 257 (2013)

    Article  Google Scholar 

  9. S. Jeong, S. Garimella, HVAC&R Res. 11, 27 (2005) https://doi.org/10.1080/10789669.2005.10391124

  10. N.I. Grigoryeva, V.E. Nakoryakov, J. Eng. Phys. 33, 1349 (1977) (English Translation of Inzhenerno-Fizicheskii Zhurnal)

    Article  Google Scholar 

  11. G. Grossman, Int. J. Heat Mass Transfer 26, 357 (1983)

    Article  Google Scholar 

  12. J.I. Yoon, T.T. Phan, C.G. Moon, P. Bansal, Appl. Therm. Eng. 25, 2219 (2005)

    Article  Google Scholar 

  13. S. Bo, X. Ma, H. Chen, Z. Lan, Heat Mass Transfer 47, 1611 (2011)

    Article  ADS  Google Scholar 

  14. E. Hofmann, H.C. Kuhlmann, Int. J. Heat Mass Transfer 55, 7686 (2012)

    Article  Google Scholar 

  15. M. Mittermaier, P. Schulze, F. Ziegler, Int. J. Heat Mass Transfer 70, 990 (2014)

    Article  Google Scholar 

  16. V.M. Soto Francés, J.M. Pinazo Ojer, Int. J. Heat Mass Transfer 46, 3299 (2003)

    Article  Google Scholar 

  17. P. Fernandez de Arroiabe, A. Martinez-Urrutia, X. Peña, M. Martinez-Agirre, M.M. Bou-Ali, Int. J. Refrig. 90, 12 (2018)

    Article  Google Scholar 

  18. A. Martinez-Urrutia, P.F. de Arroiabe, M. Ramirez, M. Martinez-Agirre, M. Mounir Bou-Ali, Int. J. Refrig. 95, 182 (2018)

    Article  Google Scholar 

  19. J. Colombani, J. Bert, J. Dupuy-Philon, J. Chem. Phys. 110, 8622 (1999)

    Article  ADS  Google Scholar 

  20. S.M. Hosseinnia, M. Naghashzadegan, R. Kouhikamali, Int. J. Therm. Sci. 114, 123 (2017)

    Article  Google Scholar 

  21. W. Nusselt, Z. Ver. Deutsch. Ing. 60, 541 (1916)

    Google Scholar 

  22. C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201 (1981)

    Article  ADS  Google Scholar 

  23. J.K. Platten, J. Appl. Mech. 73, 5 (2006)

    Article  ADS  Google Scholar 

  24. Z. Yuan, K.E. Herold, HVAC&R Res. 11, 377 (2005) https://doi.org/10.1080/10789669.2005.10391144

  25. B. Ziegler, C. Trepp, Int. J. Refrig. 7, 101 (1984)

    Article  Google Scholar 

  26. T. Meyer, Int. J. Heat Mass Transfer 80, 802 (2015)

    Article  Google Scholar 

  27. P. Sultana, N.E. Wijeysundera, J.C. Ho, C. Yap, Int. J. Refrig. 30, 709 (2007)

    Article  Google Scholar 

  28. M.M. Bou-Ali, O. Ecenarro, J.A. Madariaga, C.M. Santamaría, J.J. Valencia, Phys. Rev. E 59, 1250 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peru Fernandez de Arroiabe.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez de Arroiabe, P., Martinez-Urrutia, A., Peña, X. et al. On the thermodiffusion effect in vertical plate heat exchangers. Eur. Phys. J. E 42, 85 (2019). https://doi.org/10.1140/epje/i2019-11850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11850-7

Keywords

Navigation