Skip to main content
Log in

Study on the structure and behaviour of cavitation bubbles generated in a high-intensity focused ultrasound (HIFU) field

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this study, structures and behaviours of acoustic cavitation bubbles induced by a high-intensity focused ultrasound (HIFU) transducer, operating at its resonance frequency of 250kHz, are experimentally explored with corresponding observations captured by a high-speed video camera system. The experiments were conducted in an open-top Perspex water tank with deionized water, and illumination was provided by a LED spotlight which is placed beside the water tank throughout the whole experiment. Experimental results show that the structure of ultrasonically generated bubbles forms in a conical shape with several concentric bubble rings above the transducer. The distance between the adjacent rings with equal spacing as determined by the driving frequency of the HIFU transducer is experimentally measured and compared with the theoretical value. Then, the distribution of acoustic pressure in the acoustically driven liquid is further studied to investigate the behaviours of cavitation bubbles generated in a HIFU field. Additionally, the analysis of Bjerknes forces on the bubble surface which are induced by the gradient of acoustic pressure and the adjacent oscillating bubbles is quantitatively carried out, and the radius and velocity of a typical larger bubble are measured to characterize the behaviours of ultrasonically induced bubbles. Particularly, the physical phenomena of large bubbles including the coalescence, attraction or repulsion between adjacent bubbles, as well as the jumping of an acoustic bubble from the lower concentric ring level to the higher level, are analysed. The moving trajectory of the bubble is next obtained, and some conclusions are summarized to provide a greater understanding of the complex behaviours of the ultrasonically generated bubbles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Carlin, The use of high- and low-amplitude ultrasonic waves for inspection and processing, in Cumulative Subject and Author Index, Including Tables of Contents, Physical Acoustics, Vol. XXV, edited by R.N. Thurston, Allan D. Pierce (Academic Press, 1999) p. 228

  2. C. Chaussy, E. Schmiedt, B. Jocham, W. Brendel, B. Forssmann, V. Walther, J. Urol. 127, 417 (1982)

    Article  Google Scholar 

  3. D.L. Sokolov, M.R. Bailey, L.A. Crum, J. Acoust. Soc. Am. 110, 1685 (2001)

    Article  ADS  Google Scholar 

  4. Z. Xu, A. Ludomirsky, L.Y. Eun, T.L. Hall, B.C. Tran, J.B. Fowlkes, C.A. Cain, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 726 (2004)

    Article  Google Scholar 

  5. R. Mettin, I. Akhatov, U. Parlitz, C.D. Ohl, W. Lauterborn, Phys. Rev. E 56, 2924 (1997)

    Article  ADS  Google Scholar 

  6. D.L. Miller, J. Acoust. Soc. Am. 62, 12 (1977)

    Article  ADS  Google Scholar 

  7. T. Leighton, Ultrason. Sonochem. 2, S123 (1995)

    Article  Google Scholar 

  8. L. Chen, G. ter Haar, C. Hill, M. Dworkin, P. Carnochan, H. Young, J. Bensted, Phys. Med. Biol. 38, 1661 (1993)

    Article  Google Scholar 

  9. H. Chen, X.J. Li, M.X. Wan, Ultrason. Sonochem. 13, 480 (2006)

    Article  Google Scholar 

  10. N.N. Liu, Y.D. Cui, B.C. Khoo, A.M. Zhang, AIP Adv. 8, 115123 (2018)

    Article  ADS  Google Scholar 

  11. S. Quinto, A. Pedro, C.D. Ohl, J. Fluid Mech. 633, 425 (2009)

    Article  ADS  Google Scholar 

  12. A.H. Aghdam, V. Farhangmehr, S.W. Ohl, B.C. Khoo, M.T. Shervani-Tabar, Exp. Fluids 53, 1723 (2012)

    Article  Google Scholar 

  13. J.R. Blake, P.B. Robinson, A. Shima, Y. Tomita, J. Fluid Mech. 255, 707 (1993)

    Article  ADS  Google Scholar 

  14. S. Zhang, J.H. Duncan, G.L. Chahine, J. Fluid Mech. 257, 147 (1993)

    Article  ADS  Google Scholar 

  15. S.P. Wang, Q.X. Wang, D.M. Leppinen, A.M. Zhang, Y.L. Liu, Phys. Fluids 30, 012104 (2018)

    Article  ADS  Google Scholar 

  16. S.W. Fong, D. Adhikari, E. Klaseboer, B.C. Khoo, Exp. Fluids 46, 705 (2009)

    Article  Google Scholar 

  17. N.N. Liu, W.B. Wu, A.M. Zhang, Y.L. Liu, Phys. Fluids 29, 107102 (2017)

    Article  ADS  Google Scholar 

  18. A.M. Zhang, P. Cui, Y. Wang, Exp. Fluids 54, 1602 (2013)

    Article  Google Scholar 

  19. L.T. Liu, X.L. Yao, A.M. Zhang, Y.Y. Chen, Phys. Fluids 29, 012105 (2017)

    Article  ADS  Google Scholar 

  20. A. Dadvand, B.C. Khoo, M.T. Shervani-Tabar, Exp. Fluids 46, 419 (2009)

    Article  Google Scholar 

  21. S.P. Wang, A.M. Zhang, Y.L. Liu, D.R. Zeng, Eur. Phys. J. E 36, 119 (2013)

    Article  ADS  Google Scholar 

  22. P. Cui, A.M. Zhang, S. Wang, B.C. Khoo, J. Fluid Mech. 841, 287 (2018)

    Article  ADS  Google Scholar 

  23. A.M. Zhang, P. Cui, J. Cui, Q. Wang, J. Fluid Mech. 776, 137 (2015)

    Article  ADS  Google Scholar 

  24. S. Li, A.-M. Zhang, S. Wang, R. Han, Phys. Fluids 30, 082111 (2018)

    Article  ADS  Google Scholar 

  25. N.N. Liu, P. Cui, S.F. Ren, A.M. Zhang, Phys. Fluids 29, 052104 (2017)

    Article  ADS  Google Scholar 

  26. G. Chahine, G. Frederick, C. Lambrecht, G. Harris, H. Mair, Spark-generated bubbles as laboratory-scale models of underwater explosions and their use for validation of simulation tools, in SAVIAC: Proceedings of the 66th Shock and Vibration Symposium, October 30 - November 3, 1995, Biloxi, MS, Vol. 2 (Shock & Vibration Information Analysis Center, 1995) pp. 265--276

  27. E. Klaseboer, K.C. Hung, C. Wang, C.W. Wang, B.C. Khoo, P. Boyce, S. Debono, H. Charlier, J. Fluid Mech. 537, 387 (2005)

    Article  ADS  Google Scholar 

  28. C.F. Hung, J.J. Hwangfu, J. Fluid Mech. 651, 55 (2010)

    Article  ADS  Google Scholar 

  29. A.M. Zhang, S.P. Wang, C. Huang, B. Wang, Eur. J. Mech. B/Fluids 42, 69 (2013)

    Article  ADS  Google Scholar 

  30. T. Li, S.P. Wang, S. Li, A.M. Zhang, Appl. Ocean Res. 74, 49 (2018)

    Article  Google Scholar 

  31. A.M. Zhang, W.-S. Yang, C. Huang, F.-R. Ming, Comput. Fluids 71, 169 (2013)

    Article  MathSciNet  Google Scholar 

  32. R. Mettin, S. Luther, C.-D. Ohl, W. Lauterborn, Ultrason. Sonochem. 6, 25 (1999)

    Article  Google Scholar 

  33. R. Mettin, From a single bubble to bubble structures in acoustic cavitation, in Oscillations, Waves and Interactions, edited by T. Kurz (Universitätsverlag Göttingen, 2007) pp. 171--198

  34. A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, A. Lippert, Ultrason. Sonochem. 18, 595 (2011)

    Article  Google Scholar 

  35. S.-P. Wang, A.-M. Zhang, Y.-L. Liu, S. Zhang, P. Cui, J. Hydrodyn. 30, 975 (2018)

    Article  ADS  Google Scholar 

  36. S. Li, S. Tan, C. Xu, P. Gao, L. Sun, Int. J. Heat Mass Transfer 57, 89 (2013)

    Article  Google Scholar 

  37. C.E. Brennen, Cavitation and Bubble Dynamics (Cambridge University Press, 1995)

  38. R. Mettin, Bubble Structures in Acoustic Cavitation, in Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, edited by A.A. Doinikov (Research Signpost, Kerala, India, 2005) pp. 1--36, ISBN 81-7736-284-4

  39. C. Devin jr., J. Acoust. Soc. Am. 31, 1654 (1959)

    Article  ADS  Google Scholar 

  40. T.G. Leighton, A.J. Walton, M.J.W. Pickworth, Eur. J. Phys. 11, 47 (1990)

    Article  Google Scholar 

  41. T. Leighton, The Acoustic Bubble (Academic Press, 1997)

  42. N.A. Pelekasis, A. Gaki, A. Doinikov, J.A. Tsamopoulos, J. Fluid Mech. 500, 313 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. O.M.F.R.S. Lord Rayleigh, London Edinb. Dublin Philos. Mag. J. Sci. 34, 94 (1917)

    Article  Google Scholar 

  44. W. Lauterborn, T. Kurz, Rep. Prog. Phys. 73, 106501 (2010)

    Article  ADS  Google Scholar 

  45. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, 1968)

  46. L.A. Crum, J. Acoust. Soc. Am. 57, 1363 (1974)

    Article  ADS  Google Scholar 

  47. R. Manica, E. Klaseboer, D.Y. Chan, Langmuir 31, 6763 (2015)

    Article  Google Scholar 

  48. S.W. Ohl, E. Klaseboer, B.C. Khoo, Interface Focus 5, 20150019 (2015)

    Article  Google Scholar 

  49. M. Greenspan, C.E. Tschiegg, J. Res. Natl. Bur. Stand. 59, 249 (1957)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. -M. Zhang.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N.N., Khoo, B.C. & Zhang, A.M. Study on the structure and behaviour of cavitation bubbles generated in a high-intensity focused ultrasound (HIFU) field. Eur. Phys. J. E 42, 70 (2019). https://doi.org/10.1140/epje/i2019-11833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11833-8

Keywords

Navigation