Skip to main content
Log in

Laws and principles governing fluid flow in porous media

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Currently, it is impossible to imagine the petroleum industry without utilising numerical simulation methods for reservoir analysis and production. Investigating the petroleum reservoir performance calls for a comprehensive understanding of the physical processes that govern flow transport in porous media. Irrespective of the goals of the analysis whether pertaining to core investigations, reservoir simulation and planning of enhanced recovery methods, flow processes obey the same physical laws. In this paper, the basic laws and principles describing fluid flow and flow patterns manifesting in subsurface porous media are discussed. Appreciating the applicability and limitations of the physical laws allows us to develop and employ modelling methods for flow behaviour analysis and reservoir performance prediction which is the main goal of petroleum engineering. Concluding, we present the black-oil model, the compositional model and the complex models as applied to petroleum field applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.M. Amao, Mathematical model for Darcy Forchheimer flow with applications to well performance analysis, Thesis, Texas Tech University, 2007

  2. C.W. Hall, Laws and Models: Science, Engineering, and Technology (CRC Press, 1999)

  3. F.W. Constant, Fundamental Laws of Physics (Addison-Wesley, 1963)

  4. F.W. Constant, Fundamental Principles of Physics (Addison-Wesley, 1967)

  5. M.K. Das, P.P. Mukherjee, K. Muralidhar, Modeling Transport Phenomena in Porous Media with Applications (Springer, 2017)

  6. L. Wang, L.-P. Wang, Z. Guo, J. Mi, Int. J. Heat Mass Transfer 82, 357 (2015)

    Article  Google Scholar 

  7. C.Y. Wang, P. Cheng, Adv. Heat Transfer 30, 93 (1997)

    Article  Google Scholar 

  8. C.Y. Wang, W.B. Gu, B.Y. Liaw, J. Electrochem. Soc. 145, 3407 (1998)

    Article  Google Scholar 

  9. C. Bringedal, Modeling of heat transfer in porous media in the context of geothermal energy extraction, Thesis, University of Bergen, 2015.

  10. V. Gurau, H. Liu, S. Kakac, AIChE J. 44, 2410 (1998)

    Article  Google Scholar 

  11. V. Lampe, Modelling fluid flow and heat transport in fractured porous media, Thesis, University of Bergen, 2013

  12. W.G. Gray, C.T. Miller, Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems (Springer, 2014)

  13. X. Peng, Y. Liu, B. Liang, Z. Du, PLoS ONE 12, 177 (2017)

    Google Scholar 

  14. M. Ohlberger, B. Schweizer, Modelling of interfaces in unsaturated porous media, in Dynamical Systems and Differential Equations, AIMS Proceedings 2007, Proceedings of the 6th AIMS International Conference, Poitiers, France, 2007, Conference Publications 2007, 2007 (Special) pp. 794-803, http://www.aimsciences.org/article/doi/https://doi.org/10.3934/proc.2007.2007.794

  15. M. Dejam, H. Hassanzadeh, Z. Chen, Water Resour. Res. 53, 8187 (2017)

    Article  ADS  Google Scholar 

  16. S. Liu, J.H. Maslyah, Chem. Eng. Commun. 148, 653 (1996)

    Article  Google Scholar 

  17. A. Dybbs, R.V. Edwards, A New Look at Porous Media Fluid Mechanics -- Darcy to Turbulent (Springer, 1984) pp. 199--256

  18. C.S. Slichter, The motions of underground waters, Water Supply Paper No. 67 (Washington Government Printing Office, 1902)

  19. L. Bloshanskaya, A. Ibragimov, F. Siddiqui, M.Y. Soliman, J. Porous Media 20, 769 (2017)

    Article  Google Scholar 

  20. W. Sobieski, A. Trykozko, Tech. Sci. 17, 321 (2014)

    Google Scholar 

  21. H. Teng, T.S. Zhao, Chem. Eng. Sci. 55, 2727 (2000)

    Article  Google Scholar 

  22. K.R. Bahoush, H.S. Kazemzadeh, Mech. Eng. 16, 159 (2009)

    Google Scholar 

  23. H.-C. Chan, W.C. Huang, J.-M. Leu, C.-J. Lai, Int. J. Heat Fluid Flow 28, 1157 (2007)

    Article  Google Scholar 

  24. Ø. Fevang, K. Singh, C.H. Whitson, Guidelines for choosing compositional and black-oil models for volatile oil and gas-condensate reservoirs, in SPE Annual Technical Conference and Exhibition, Conference Proceedings (Society of Petroleum Engineers, 2000)

  25. J. Haukas, Compositional reservoir simulation with emphasis on the IMPSAT formulation, University of Bergen, 2006

  26. Z. Chen, SIAM J. Numer. Anal. 38, 489 (2000)

    Article  MathSciNet  Google Scholar 

  27. G. Qin, R.E. Ewing, Z. Chen, SIAM J. Appl. Math. 60, 747 (2000)

    Article  MathSciNet  Google Scholar 

  28. A.H. Alizadeh, M. Piri, Rev. Geophys. 52, 468 (2014)

    Article  ADS  Google Scholar 

  29. O.O. Duru, R.N. Horne, SPE Reserv. Eval. Eng. 13, 873 (2010)

    Article  Google Scholar 

  30. S. Yin, M.B. Dusseault, L. Rothenburg, Int. J. Numer. Anal. Methods Geomech. 33, 449 (2009)

    Article  Google Scholar 

  31. C. Guo, M. Wei, H. Liu, PLoS ONE 10, e0143649 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Hadjistassou.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalchuk, N., Hadjistassou, C. Laws and principles governing fluid flow in porous media. Eur. Phys. J. E 42, 56 (2019). https://doi.org/10.1140/epje/i2019-11819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11819-6

Keywords

Navigation