Skip to main content
Log in

Hydrogen isotope replacement changes hydration and large scale structure, but not small scale structure, of agarose hydrogel networks

The European Physical Journal E Aims and scope Submit manuscript

An Erratum to this article was published on 23 July 2019

This article has been updated

Abstract.

Agarose samples of low (Ag1) and high (Ag2) O -methyl content on position 6 of the galactose residue were studied in H2O and D2O. Differential scanning calorimetry, turbidity and rheological measurements showed a \( \approx\) 2 ° C shift in the coil-to-helix transition temperature, indicating higher helix stability in D2O. The differential scanning calorimetry data could be superimposed using a temperature shift factor, suggesting similar extents of helix aggregation in both solvents. Small angle X-ray scattering of H2O and D2O gels were essentially identical, indicating no change in the small scale ( \( \approx\) 0.05-20 nm) network structure on isotopic exchange. Larger (\( \approx\) 1 μm) scale heterogeneities were more pronounced in deuterium gels. The 1HT2 relaxation times were measured at different H/D ratios. These relaxation times were analyzed using a model assuming regular solution mixing of H2O, HDO and D2O between the solvent and gel phases. The fit results suggested that H2O has higher affinity for the agarose network than HDO and D2O. The difference, however, was much larger for the Ag2 sample. This finding implies that the higher hydrophobic effect observed in D2O affects the hydration state much more strongly for the more hydrophobic (and more polarizable) agarose sample Ag2. As a consequence, Ag2 (but not Ag1) gels retained more H2O than D2O. In contrast, the bulk rheology of either hydrogel was not affected by the isotopic exchange.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Change history

  • 23 July 2019

    With reference to eq. (5) in the original article, the authors have neglected to specify the description of some terms in the text. They correct the mistake in the present erratum.

References

  1. K.B. Wiberg, Chem. Rev. 55, 713 (1955)

    Article  Google Scholar 

  2. S. Scheiner, M. Cuma, J. Am. Chem. Soc. 118, 1511 (1996)

    Article  Google Scholar 

  3. A. Soper, C. Benmore, Phys. Rev. Lett. 101, 065502 (2008)

    Article  ADS  Google Scholar 

  4. G.N. Lewis, R.T. Macdoland, J. Am. Chem. Soc. 55, 3057 (1933)

    Article  Google Scholar 

  5. E.A. Long, J. Kemp, J. Am. Chem. Soc. 58, 1829 (1936)

    Article  Google Scholar 

  6. H.C. Urey, G.K. Teal, Rev. Mod. Phys. 7, 34 (1935)

    Article  ADS  Google Scholar 

  7. G. Chakrabarti, S. Kim, M.L. Gupta, J.S. Barton, R.H. Himes, Biochemistry 38, 3067 (1999)

    Article  Google Scholar 

  8. A. Das, S. Sinha, B.R. Acharya, P. Paul, B. Bhattacharyya, G. Chakrabarti, BMB Rep. 41, 62 (2008)

    Article  Google Scholar 

  9. C.H. Luan, D.W. Urry, J. Phys. Chem. 95, 7896 (1991)

    Article  Google Scholar 

  10. A. Dong, B. Kendrick, L. Kreilgård, J. Matsuura, M.C. Manning, J.F. Carpenter, Arch. Biochem. Biophys. 347, 213 (1997)

    Article  Google Scholar 

  11. M.J. Parker, A.R. Clarke, Biochemistry 36, 5786 (1997)

    Article  Google Scholar 

  12. M. Verheul, S.P.F.M. Roefs, K.G. de Kruif, FEBS Lett. 421, 273 (1998)

    Article  Google Scholar 

  13. M. Verheul, S.P.F.M. Roefs, K.G. de Kruif, J. Agric. Food Chem. 46, 896 (1998)

    Article  Google Scholar 

  14. M. Calvin, J. Hermans, H.A. Scheraga, J. Am. Chem. Soc. 81, 5048 (1959)

    Article  Google Scholar 

  15. M.V.C. Cardoso, E. Sabadini, Carbohydr. Res. 345, 2368 (2010)

    Article  Google Scholar 

  16. A. Pica, G. Graziano, Biopolymers 109, e23076 (2018)

    Article  Google Scholar 

  17. X.T. Fu, S.M. Kim, Mar. Drugs 8, 200 (2010)

    Article  Google Scholar 

  18. S. Knutsen, D. Myslabodski, B. Larsen, A. Usov, Bot. Mar. 37, 163 (1994)

    Article  Google Scholar 

  19. K. Guiseley, Carbohyd. Res. 13, 247 (1970)

    Article  Google Scholar 

  20. J.M. Guenet, A. Brulet, C. Rochas, Int. J. Biol. Macromol. 15, 131 (1993)

    Article  Google Scholar 

  21. J.M. Guenet, C. Rochas, A. Brulet, J. Phys. IV 3, 99 (1993)

    Google Scholar 

  22. K. Nishinari, M. Watase, K. Kohyama, N. Nishinari, D. Oakenfull, K. Shoichiro, O. Kazuyoshi, P.A. Williams, G.O. Phillips, Polym. J. 24, 871 (1992)

    Article  Google Scholar 

  23. V. Normand, D.L. Lootens, E. Amici, K.P. Plucknett, P. Aymard, Biomacromolecules 1, 730 (2000)

    Article  Google Scholar 

  24. K. Nishinari, M. Watase, E. Miyoshi, T. Takaya, D. Oakenfull, Food Technol. 49, 90 (1995)

    Google Scholar 

  25. S. Arnott, A. Fulmer, W.E. Scott, I.C.M. Dea, R. Moorhouse, D.A. Rees, J. Mol. Biol. 90, 269 (1974)

    Article  Google Scholar 

  26. I.J. Miller, R. Falshaw, R.H. Furneaux, Carbohydr. Res. 262, 127 (1994)

    Article  Google Scholar 

  27. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958)

    Article  ADS  Google Scholar 

  28. P. Belton, Food Rev. Int. 27, 170 (2011)

    Article  Google Scholar 

  29. G. Paradossi, F. Cavalieri, V. Crescenzi, Carbohydr. Res. 300, 77 (1997)

    Article  Google Scholar 

  30. M.C. Vieira, A.M. Gil, Carbohydr. Polym. 60, 439 (2005)

    Article  Google Scholar 

  31. P.J. Flory, J. Chem. Phys. 9, 660 (1941)

    Article  ADS  Google Scholar 

  32. M.L. Huggins, J. Phys. Chem. 46, 151 (1942)

    Article  Google Scholar 

  33. T. Brenner, S. Matsukawa, Int. J. Biol. Macromol. 92, 1151 (2016)

    Article  Google Scholar 

  34. T. Brenner, S. Matsukawa, Int. J. Biol. Macromol. 114, 187 (2018)

    Article  Google Scholar 

  35. M. Djabourov, A.H. Clark, D.W. Rowlands, S.B. Ross-Murphy, Macromolecules 22, 180 (1989)

    Article  ADS  Google Scholar 

  36. M.J. Solomon, P.T. Spicer, Soft Matter 6, 1391 (2010)

    Article  ADS  Google Scholar 

  37. N. Russ, B.I. Zielbauer, K. Koynov, T.A. Vilgis, Biomacromolecules 14, 4116 (2013)

    Article  Google Scholar 

  38. W. Derbyshire, I. Duff, Faraday Discuss. Chem. Soc. 57, 243 (1974)

    Article  Google Scholar 

  39. Y. Huang, E. Davies, P. Lillford, J. Agric. Food Chem. 59, 4078 (2011)

    Article  Google Scholar 

  40. P. Dejmek, P. Walstra, in Cheese: Chemistry, Physics and Microbiology, Vol. 1: General Aspects, edited by P. Fox, P. McSweeney, T. Cogan, T. Guinee (Elsevier Academic Press, Amsterdam, The Netherlands, 2004) p. 71

  41. R. Bosque, J. Sales, J. Chem. Inf. Comput. Sci. 42, 1154 (2002)

    Article  Google Scholar 

  42. E. Amici, A.H. Clark, V. Normand, N.B. Johnson, Biomacromolecules 3, 466 (2002)

    Article  Google Scholar 

  43. T. Brenner, F. Hayakawa, S. Ishihara, Y. Tanaka, M. Nakauma, K. Kohyama, P. Achayuthakan, T. Funami, K. Nishinari, J. Texture Stud. 45, 30 (2014)

    Article  Google Scholar 

  44. J.R. Mitchell, J. Texture Stud. 11, 315 (1980)

    Article  Google Scholar 

  45. J. Jones, C. Marques, J. Phys. (Paris) 51, 1113 (1990)

    Article  Google Scholar 

  46. Z. Wang, K. Yang, T. Brenner, H. Kikuzaki, K. Nishinari, Food Hydrocolloids 36, 196 (2014)

    Article  Google Scholar 

  47. K. Nishinari, M. Watase, Thermochim. Acta 206, 149 (1992)

    Article  Google Scholar 

  48. K. Nishinari, M. Watase, T. Hatakeyama, Colloid Polym. Sci. 275, 1078 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Brenner.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, T., Tuvikene, R., Cao, Y. et al. Hydrogen isotope replacement changes hydration and large scale structure, but not small scale structure, of agarose hydrogel networks. Eur. Phys. J. E 42, 53 (2019). https://doi.org/10.1140/epje/i2019-11816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11816-9

Keywords

Navigation