Skip to main content
Log in

A first-principles study of pristine and Al-doped activated carbon interacting with 5-Fluorouracil anticancer drug

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The adsorption of the 5-Fluorouracil (5-FU) molecule on the pristine and Al-doped activated carbon (AC) was investigated by using the Vienna Ab-initio Simulation Package. It is found that the 5-FU molecule is only weakly adsorbed on the pristine AC with high adsorption energy and large surface distance. The adsorption of the 5-FU molecule on pristine AC is highly disfavored. In contrast, the molecule shows strong interactions with the Al-doped AC confirmed by the lesser adsorption energy, the charge transfers on the Al-modified zone and the significant changes in the DOS at the Fermi level. The results of our study suggest that the Al dopant increases the adsorption capacity of AC enhancing its interactions with polar atoms of the adsorbate, hence improving its adsorption properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.A. Rich, R.C. Shepard, S.T. Mosley, J. Clin. Oncol. 22, 2214 (2004)

    Article  Google Scholar 

  2. X. Wang, J. Lin, X. Zhang, Q. Liu, Q. Xu, R.-X. Tan, Z. Guo, J. Inorg. Biochem. 94, 186 (2003)

    Article  Google Scholar 

  3. F.H. Lin, Y.H. Lee, C.H. Jian, J.-M. Wong, M.-J. Shieh, C.-Y. Wang, Biomaterials 23, 1981 (2002)

    Article  Google Scholar 

  4. J.L. Arias, Molecules 13, 2340 (2008)

    Article  Google Scholar 

  5. Y. Zhu, T. Ikoma, N. Hanagata, S. Kaskel, Small 6, 471 (2010)

    Article  Google Scholar 

  6. R.C. Bansal, J.B. Donnet, F. Stoeckli, Active Carbon (Dekker, New York, 1988)

  7. Y. Zhong, Z. Junxian, L. Peifeng, Z. Yingge, J. Sci. Conf. Proc. 1, 190 (2009) https://doi.org/10.1166/jcp.2009.1056

    Article  Google Scholar 

  8. M.K. Hazrati, N.L. Hadipour, Phys. Lett. A 380, 937 (2016)

    Article  ADS  Google Scholar 

  9. A. Soltani, M.T. Baei, E.T. Lemeski, S. Kaveh, H. Balakheyli, J. Phys. Chem. Solids 86, 57 (2015)

    Article  ADS  Google Scholar 

  10. M.K. Hazrati, Z. Javanshir, Z. Bagheri, J. Mol. Graph. Model. 77, 17 (2017)

    Article  Google Scholar 

  11. https://doi.org/www.vasp.at/

  12. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  13. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  14. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  ADS  Google Scholar 

  15. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  16. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 48, 4978 (1993)

    Article  ADS  Google Scholar 

  18. P. Bloch, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  19. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  20. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  22. N. Chen, R.T. Yang, Carbon 36, 1061 (1998)

    Article  Google Scholar 

  23. N. Chen, R.T. Yang, J. Chem. Phys. A 102, 6348 (1998)

    Article  ADS  Google Scholar 

  24. D. Lamoen, B.N.J. Persson, J. Chem. Phys. 108, 3332 (1998)

    Article  ADS  Google Scholar 

  25. Z.H. Zhu, G.Q. Lu, Langmuir 20, 10751 (2004)

    Article  Google Scholar 

  26. C. Janiak, R.R. Hoffmann, P. Sjovall, B. Kasemo, Langmuir 9, 3427 (1993)

    Article  Google Scholar 

  27. J.R. Pliego, S.M. Resende, E. Humeres, J. Chem. Phys. 314, 127 (2005)

    Google Scholar 

  28. K.T. Thomson, K.E. Gubbins, Langmuir 16, 5761 (2000)

    Article  Google Scholar 

  29. A.P. Terzyk, S. Furmaniak, P.A. Gauden, P.J.F. Harris, J. Włoch, P. Kowalczyk, J. Phys.: Condens. Matter. 19, 406208 (2007)

    Google Scholar 

  30. J.M. Hernández, E.C. Anota, M.T. de la Cruz, M.G. Melchor, G.H. Cocoletzi, J. Mol. Model. 18, 3857 (2012)

    Article  Google Scholar 

  31. Z.M. Ao, J. Yang, S. Li, Q. Jiang, Chem. Phys. Lett. 461, 276 (2008)

    Article  ADS  Google Scholar 

  32. R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, J. Mol. Struct. (THEOCHEM) 806, 93 (2007)

    Article  Google Scholar 

  33. N. Domancich, Doctoral Thesis (2013) https://doi.org/repositoriodigital.uns.edu.ar/handle/123456789/2455

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Simonetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román, G., Noseda Grau, E., Díaz Compañy, A. et al. A first-principles study of pristine and Al-doped activated carbon interacting with 5-Fluorouracil anticancer drug. Eur. Phys. J. E 41, 107 (2018). https://doi.org/10.1140/epje/i2018-11718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11718-4

Keywords

Navigation