Skip to main content
Log in

Morphological classification and dynamics of a two-dimensional drop sliding on a vertical plate

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A two-dimensional drop sliding down a plate under the action of gravity is numerically studied. A lattice Boltzmann method coupled with the phase field method is utilized, which can well capture the motion of the three-phase contact line. The morphologies of the sliding drop and corresponding force balance during the process are considered. It is found that there are two basic sliding modes of the drop with various gravitational and viscous effects. The viscous shear stress ( \(\tau_x\) from the wall acts on the bottom of the drop, and it is divided in two parts. One is in the contact line region, and the other on the rest part of the solid-liquid interface (contacting area). The former one appears as \(\tau_x\) -peaks, which are purely determined by the intrinsic contact angle ( \(\theta_Y\) and sliding speed. They are very local. When the gravity is small, the drop slides down very slowly, and such shear force can balance the gravity. Meanwhile, the shape of the droplet can be interestingly characterized as a “pendant drop”. When the gravity increases, an additional shear force is generated mainly due to the appearing of a trail at the rear part of the drop. The de-wetting failure condition makes the sliding velocity almost constant in this regime. The present study is also valuable to understand the physics of three-dimensional drop sliding.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.A. Puthenveettil, V.K. Senthilkumar, E.J. Hopfinger, J. Fluid Mech. 726, 26 (2013)

    Article  ADS  Google Scholar 

  2. T. Podgorski, J.-M. Flesselles, L. Limat, Phys. Rev. Lett. 87, 036102 (2001)

    Article  ADS  Google Scholar 

  3. N. Savva, S. Kalliadasis, J. Fluid Mech. 725, 462 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Le Grand, A. Daerr, L. Limat, J. Fluid Mech. 541, 293 (2005)

    Article  ADS  Google Scholar 

  5. E.S. Benilov, M.S. Benilov, J. Fluid Mech. 773, 75 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)

    Article  ADS  Google Scholar 

  7. S. Varagnolo, D. Ferraro, P. Fantinel et al., Phys. Rev. Lett. 111, 066101 (2013)

    Article  ADS  Google Scholar 

  8. S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998)

    Article  ADS  Google Scholar 

  9. J.A. Briant, P. Papatzacos, J.M. Yeomas, Philos. Trans. R. Soc. A 360, 485 (2002)

    Article  ADS  Google Scholar 

  10. T. Lee, C.-L. Lin, J. Comput. Phys. 206, 16 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Liu, X.-P. Chen, Phys. Fluids 29, 082102 (2017)

    Article  ADS  Google Scholar 

  12. T. Lee, L. Liu, J. Comput. Phys. 229, 8045 (2010)

    Article  ADS  Google Scholar 

  13. X. He, X. Shan, D.G. Doolen, Phys. Rev. E 57, R13 (1998)

    Article  ADS  Google Scholar 

  14. X. He, S. Chen, R. Zhang, J. Comput. Phys. 152, 642 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Jacqmin, J. Comput. Phys. 155, 96 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Yue, C. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 219, 47 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. P. Gao, J.J. Feng, Phys. Fluids 21, 102102 (2009)

    Article  ADS  Google Scholar 

  18. O.V. Voinov, Fluid Dyn. 11, 714 (1967)

    Article  ADS  Google Scholar 

  19. R.G. Cox, J. Fluid Mech. 168, 168 (1986)

    ADS  Google Scholar 

  20. T.S. Chan, S. Srivastava, A. Marchand et al., Phys. Fluids 25, 074105 (2013)

    Article  ADS  Google Scholar 

  21. E.Y. Arashiro, N.R. Demarquette, Mater. Res. 2, 23 (1999)

    Article  Google Scholar 

  22. S.P. Thampi, I. Pagonabarraga, R. Adhikari, R. Govindarajan, Soft Matter 12, 6073 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Peng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Chen, XP. Morphological classification and dynamics of a two-dimensional drop sliding on a vertical plate. Eur. Phys. J. E 41, 92 (2018). https://doi.org/10.1140/epje/i2018-11707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11707-7

Keywords

Navigation