Skip to main content
Log in

Correlation between polar surface area and bioferroelectricity in DNA and RNA nucleobases

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have performed computational molecular modelling to study the polarization switching and hysteresis loop behaviours of DNA and RNA nucleobases using the PM3 semi-empirical quantum mechanical approaches. All the nucleobases: adenine (A), thymine (T), guanine (G), cytosine (C), and uracil (U) were modelled. Our study indicates that all the nucleobases exhibit a zero-field polarization due to the presence of polar atoms or molecules such as amidogen and carbonyl. The shape of polarization P versus an applied electric field E hysteresis loop is square, implying typical ferroelectrics behaviour. The total energy U as a function of an applied electric field E exhibits a butterfly-like loop. The presence of zero-field polarization and ferroelectrics hysteresis loop behaviours in nucleobases may support the hypothesis of the existence of bioferroelectricity in DNA and RNA. We also found an interesting relationship between the minimum electric field required for switching \( E_{C}\) and the ratio of the topological polar surface area (TPSA) to the total surface area (TSA) of a nucleobase. In particular, the \( E_{C}\) of a nucleobase is inversely proportional to the TPSA/TSA ratio. This work may provide useful information for understanding the possible existence of ferroelectricity in biomaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.M. Church, Y. Gao, S. Kosuri, Science 337, 1628 (2012)

    Article  ADS  Google Scholar 

  2. Y. Erlich, D. Zielinski, Science 355, 950 (2017)

    Article  ADS  Google Scholar 

  3. A. Extance, Nature 537, 22 (2016)

    Article  ADS  Google Scholar 

  4. R.K. Moyzis, J.M. Buckingham, L.S. Cram, M. Dani, L.L. Deaven, M.D. Jones, J. Meyne, R.L. Ratliff, J.R. Wu, Proc. Natl. Acad. Sci. U.S.A. 85, 6622 (1988)

    Article  ADS  Google Scholar 

  5. Y. Liu, H.-L. Cai, M. Zelisko, Y. Wang, J. Sun, F. Yan, F. Ma, P. Wang, Q.N. Chen, H. Zheng, X. Meng, P. Sharma, Y. Zhang, J. Li, Proc. Natl. Acad. Sci. U.S.A. 111, E2780 (2014)

    Article  Google Scholar 

  6. Y. Liu, Y. Wang, M.-J. Chow, N.Q. Chen, F. Ma, Y. Zhang, J. Li, Phys. Rev. Lett. 110, 168101 (2013)

    Article  ADS  Google Scholar 

  7. T. Lenz, R. Hummel, I. Katsouras, W.A. Groen, M. Nijemeisland, R. Ruemmler, M.K.E. Schäfer, D.M.d. Leeuw, Appl. Phys. Lett. 111, 133701 (2017)

    Article  ADS  Google Scholar 

  8. M.T. Hwang, P.B. Landon, J. Lee, D. Choi, A.H. Mo, G. Glinsky, R. Lal, Proc. Natl. Acad. Sci. U.S.A. 113, 7088 (2016)

    Article  ADS  Google Scholar 

  9. Z. Altintas, I.E. Tothill, Sens. Actuators B: Chem. 169, 188 (2012)

    Article  Google Scholar 

  10. X.C. Zhou, L.Q. Huang, S.F. Li, Biosens. Bioelectron. 16, 85 (2001)

    Article  Google Scholar 

  11. J. Wang, Anal. Chim. Acta. 469, 63 (2002)

    Article  ADS  Google Scholar 

  12. J. Polonsky, P. Douzou, C. Sadron, C. R. Hebd. Seances Acad. Sci. 250, 3414 (1960)

    Google Scholar 

  13. A.L. Stanford, R.A. Lorey, Nature 219, 1250 (1968)

    Article  ADS  Google Scholar 

  14. Y. Ando, E. Fukada, J. Polym. Sci.: Polym. Phys. Ed. 14, 63 (1976)

    ADS  Google Scholar 

  15. E. Fukada, Y. Ando, J. Polym. Sci. Part A-2: Polym. Phys. 10, 565 (1972)

    Article  Google Scholar 

  16. J. Duchesne, J. Depireux, A. Bertinchamps, N. Cornet, J.M. Van Der Kaa, Nature 188, 405 (1960)

    Article  ADS  Google Scholar 

  17. V.K. Yarmarkin, S.G. Shul'man, V.V. Lemanov, Phys. Solid State 51, 1881 (2009)

    Article  ADS  Google Scholar 

  18. HyperChem, Tools for Molecular Modeling (Hypercube, Inc., 2002)

  19. D. Hadjipavlou-Litina, Curr. Med. Chem. 7, 375 (2000)

    Article  Google Scholar 

  20. P. Ertl, B. Rohde, P. Selzer, J. Med. Chem. 43, 3714 (2000)

    Article  Google Scholar 

  21. http://www.molinspiration.com

  22. C.S. Tsai, in An Introduction to Computational Biochemistry (John Wiley & Sons, Inc., 2003) p. 315

  23. K.M. Khoda, Y. Liu, C. Storey, J. Optimization Theory Appl. 75, 345 (1992)

    Article  MathSciNet  Google Scholar 

  24. D. Klostermeier, M.G. Rudolph, Biophysical Chemistry (CRC Press, Taylor & Francis Group, 2017)

  25. G. Tasi, I. Palinko, L. Nyerges, P. Fejes, H. Foerster, J. Chem. Inf. Comput. Sci. 33, 296 (1993)

    Article  Google Scholar 

  26. I. Bdikin, A. Heredia, S.M. Neumayer, V.S. Bystrov, J. Gracio, B.J. Rodriguez, A.L. Kholkin, J. Appl. Phys. 118, 072007 (2015)

    Article  ADS  Google Scholar 

  27. R. Santamaria, A. Vázquez, J. Comput. Chem. 15, 981 (1994)

    Article  Google Scholar 

  28. V.S. Bystrov, E. Seyedhosseini, I. Bdikin, S. Kopyl, S.M. Neumayer, J. Coutinho, A.L. Kholkin, Ferroelectrics 475, 107 (2015)

    Article  Google Scholar 

  29. A. Pranitha, P. Lakshmi, Iran. J. Pharm. Sci. 10, 47 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khian-Hooi Chew.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yam, SC., Zain, S.M., Sanghiran Lee, V. et al. Correlation between polar surface area and bioferroelectricity in DNA and RNA nucleobases. Eur. Phys. J. E 41, 86 (2018). https://doi.org/10.1140/epje/i2018-11696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11696-5

Keywords

Navigation