Skip to main content
Log in

On the effect of the thermostat in non-equilibrium molecular dynamics simulations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The numerical investigation of the statics and dynamics of systems in non-equilibrium in general, and under shear flow in particular, has become more and more common. However, not all the numerical methods developed to simulate equilibrium systems can be successfully adapted to out-of-equilibrium cases. This is especially true for thermostats. Indeed, even though thermostats developed to work under equilibrium conditions sometimes display good agreement with rheology experiments, their performance rapidly degrades beyond weak dissipation and small shear rates. Here we focus on gauging the relative performances of three thermostats, Langevin, dissipative particle dynamics, and Bussi-Donadio-Parrinello under varying parameters and external conditions. We compare their effectiveness by looking at different observables and clearly demonstrate that choosing the right thermostat (and its parameters) requires a careful evaluation of, at least, temperature, density and velocity profiles. We also show that small modifications of the Langevin and DPD thermostats greatly enhance their performance in a wide range of parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 2017)

  2. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 (Academic Press, 2001)

  3. M. Ripoll, K. Mussawisade, R. Winkler, G. Gompper, Phys. Rev. E 72, 016701 (2005)

    Article  ADS  Google Scholar 

  4. R. Kapral, Adv. Chem. Phys. 140, 89 (2008)

    Google Scholar 

  5. G. Gompper, T. Ihle, D. Kroll, R. Winkler, in Advanced Computer Simulation Approaches for Soft Matter Sciences III (Springer, 2009) pp. 1--87

  6. H.J. Berendsen, J.v. Postma, W.F. van Gunsteren, A. DiNola, J. Haak, J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  Google Scholar 

  7. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)

    Article  ADS  Google Scholar 

  8. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)

    Article  ADS  Google Scholar 

  9. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  10. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  11. S.D. Stoyanov, R.D. Groot, J. Chem. Phys. 122, 114112 (2005)

    Article  ADS  Google Scholar 

  12. G.J. Martyna, M.L. Klein, M. Tuckerman, J. Chem. Phys. 97, 2635 (1992)

    Article  ADS  Google Scholar 

  13. T. Schneider, E. Stoll, Phys. Rev. B 17, 1302 (1978)

    Article  ADS  Google Scholar 

  14. B. Dünweg, J. Chem. Phys. 99, 6977 (1993)

    Article  ADS  Google Scholar 

  15. P. Hoogerbrugge, J. Koelman, Europhys. Lett. 19, 155 (1992)

    Article  ADS  Google Scholar 

  16. P. Espanol, P. Warren, Europhys. Lett. 30, 191 (1995)

    Article  ADS  Google Scholar 

  17. C. Lowe, Europhys. Lett. 47, 145 (1999)

    Article  ADS  Google Scholar 

  18. G. Besold, I. Vattulainen, M. Karttunen, J.M. Polson, Phys. Rev. E 62, R7611 (2000)

    Article  ADS  Google Scholar 

  19. T. Shardlow, SIAM J. Sci. Comput. 24, 1267 (2003)

    Article  MathSciNet  Google Scholar 

  20. E. Peters, Europhys. Lett. 66, 311 (2004)

    Article  ADS  Google Scholar 

  21. B. Leimkuhler, X. Shang, J. Comput. Phys. 280, 72 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Ellero, P. Espanol, Appl. Math. Mech. 39, 103 (2018)

    Article  Google Scholar 

  23. X. Fan, N. Phan-Thien, S. Chen, X. Wu, T. Yong Ng, Phys. Fluids 18, 063102 (2006)

    Article  ADS  Google Scholar 

  24. N. Phan-Thien, N. Mai-Duy, Understanding Viscoelasticity: An Introduction to Rheology (Springer, 2017)

  25. P. Español, Europhys. Lett. 39, 605 (1997)

    Article  ADS  Google Scholar 

  26. P. Espanol, Phys. Rev. E 57, 2930 (1998)

    Article  ADS  Google Scholar 

  27. J.B. Avalos, A. Mackie, Europhys. Lett. 40, 141 (1997)

    Article  ADS  Google Scholar 

  28. M. Liu, G. Liu, Archiv. Comput. Methods Eng. 17, 25 (2010)

    Article  Google Scholar 

  29. Z.-B. Wang, R. Chen, H. Wang, Q. Liao, X. Zhu, S.-Z. Li, Appl. Math. Model. 40, 9625 (2016)

    Article  MathSciNet  Google Scholar 

  30. P. Espanol, M. Revenga, Phys. Rev. E 67, 026705 (2003)

    Article  ADS  Google Scholar 

  31. A. Vazquez-Quesada, M. Ellero, J. Non-Newton. Fluid Mech. 233, 37 (2016)

    Article  MathSciNet  Google Scholar 

  32. M. Whittle, K.P. Travis, J. Chem. Phys. 132, 124906 (2010)

    Article  ADS  Google Scholar 

  33. A. Boromand, S. Jamali, J.M. Maia, Soft Matter 13, 458 (2017)

    Article  ADS  Google Scholar 

  34. G. Bussi, M. Parrinello, Comput. Phys. Commun. 179, 26 (2008)

    Article  ADS  Google Scholar 

  35. B. Lander, U. Seifert, T. Speck, J. Chem. Phys. 138, 224907 (2013)

    Article  ADS  Google Scholar 

  36. T. Mohorič, J. Dobnikar, J. Horbach, Soft Matter 12, 3142 (2016)

    Article  ADS  Google Scholar 

  37. M. Kohl, M. Schmiedeberg, Eur. Phys. J. E 40, 71 (2017)

    Article  Google Scholar 

  38. T. Soddemann, B. Dünweg, K. Kremer, Phys. Rev. E 68, 046702 (2003)

    Article  ADS  Google Scholar 

  39. J. Zausch, J. Horbach, M. Laurati, S.U. Egelhaaf, J.M. Brader, T. Voigtmann, M. Fuchs, J. Phys.: Condens. Matter 20, 404210 (2008)

    Google Scholar 

  40. G.P. Shrivastav, P. Chaudhuri, J. Horbach, Phys. Rev. E 94, 042605 (2016)

    Article  ADS  Google Scholar 

  41. J. Zausch, J. Horbach, P. Virnau, K. Binder, J. Phys.: Condens. Matter 22, 104120 (2010)

    ADS  Google Scholar 

  42. C. Pastorino, T. Kreer, M. Müller, K. Binder, Phys. Rev. E 76, 026706 (2007)

    Article  ADS  Google Scholar 

  43. P.S. Doyle, E.S. Shaqfeh, A.P. Gast, Phys. Rev. Lett. 78, 1182 (1997)

    Article  ADS  Google Scholar 

  44. X. Yong, L.T. Zhang, Phys. Rev. E 82, 056313 (2010)

    Article  ADS  Google Scholar 

  45. J.-L. Barrat, L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999)

    Article  ADS  Google Scholar 

  46. N.V. Priezjev, S.M. Troian, J. Fluid Mech. 554, 25 (2006)

    Article  ADS  Google Scholar 

  47. A. Niavarani, N.V. Priezjev, Phys. Rev. E 81, 011606 (2010)

    Article  ADS  Google Scholar 

  48. X. Yong, L.T. Zhang, J. Chem. Phys. 138, 084503 (2013)

    Article  ADS  Google Scholar 

  49. B. Leimkuhler, X. Shang, J. Comput. Phys. 324, 174 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  50. X. Shang, M. Kroger, B. Leimkuhler, Soft Matter 13, 8565 (2017)

    Article  ADS  Google Scholar 

  51. A. Lees, S. Edwards, J. Phys. C: Solid State Phys. 5, 1921 (1972)

    Article  ADS  Google Scholar 

  52. G.P. Morriss, D.J. Evans, Statistical Mechanics of Nonequilbrium Liquids (ANU Press, 2013)

  53. F. Zhang, D.J. Searles, D.J. Evans, J.S. den Toom Hansen, D.J. Isbister, J. Chem. Phys. 111, 18 (1999)

    Article  ADS  Google Scholar 

  54. G. Pan, J.F. Ely, C. McCabe, D.J. Isbister, J. Chem. Phys. 122, 094114 (2005)

    Article  ADS  Google Scholar 

  55. B. Todd, P.J. Daivis, Mol. Simul. 33, 189 (2007)

    Article  Google Scholar 

  56. D.A. Sivak, J.D. Chodera, G.E. Crooks, J. Phys. Chem. B 118, 6466 (2014)

    Article  Google Scholar 

  57. D.L. Ermak, J. McCammon, J. Chem. Phys. 69, 1352 (1978)

    Article  ADS  Google Scholar 

  58. A. Brünger, C.L. Brooks, M. Karplus, Chem. Phys. Lett. 105, 495 (1984)

    Article  ADS  Google Scholar 

  59. R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)

    Article  ADS  Google Scholar 

  60. A. Moshfegh, A. Jabbarzadeh, Soft Mater. 13, 106 (2015)

    Article  Google Scholar 

  61. B. Dünweg, W. Paul, Int. J. Mod. Phys. C 2, 817 (1991)

    Article  ADS  Google Scholar 

  62. M. Cloitre, High Solid Dispersions, Vol. 236 (Springer, 2010)

  63. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Elsevier, 1990)

  64. A.M. Puertas, C. De Michele, F. Sciortino, P. Tartaglia, E. Zaccarelli, J. Chem. Phys. 127, 144906 (2007)

    Article  ADS  Google Scholar 

  65. C. Junghans, M. Praprotnik, K. Kremer, Soft Matter 4, 156 (2008)

    Article  ADS  Google Scholar 

  66. H.-J. Qian, C.C. Liew, F. Müller-Plathe, Phys. Chem. Chem. Phys. 11, 1962 (2009)

    Article  Google Scholar 

  67. E. Koopman, C. Lowe, J. Chem. Phys. 124, 204103 (2006)

    Article  ADS  Google Scholar 

  68. G. Bussi, T. Zykova-Timan, M. Parrinello, J. Chem. Phys. 130, 074101 (2009)

    Article  ADS  Google Scholar 

  69. K. Kang, H. Kriegs, J. Dhont, O. Danko, J. Marakis, D. Vlassopoulos, Phys. Rev. Fluids 2, 043301 (2017)

    Article  ADS  Google Scholar 

  70. A. Chatterjee, Mol. Simul. 33, 1233 (2007)

    Article  Google Scholar 

  71. J.-L. Barrat, L. Berthier, Phys. Rev. E 63, 012503 (2000)

    Article  ADS  Google Scholar 

  72. F. Varnik, J. Chem. Phys. 125, 164514 (2006)

    Article  ADS  Google Scholar 

  73. J. Zausch, Dynamics, Rheology and Critical Properties of Colloidal Fluid Mixtures: Molecular Dynamics Studies in Equilibrium and Under, PhD Thesis, Universität Mainz (2009)

  74. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ruiz-Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Franco, J., Rovigatti, L. & Zaccarelli, E. On the effect of the thermostat in non-equilibrium molecular dynamics simulations. Eur. Phys. J. E 41, 80 (2018). https://doi.org/10.1140/epje/i2018-11689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11689-4

Keywords

Navigation