Skip to main content
Log in

Nonequilibrium processes in meta-stable media

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Meta-stable systems are those staying in the local equilibrium state: being slightly deviated from it they return to the equilibrium, but in case deviation surpasses a critical value those systems fall down to another equilibrium state. Chemically reacting gaseous mixture provides a typical example of a meta-stable system. The paper is aimed at numerical and experimental investigation of detonation initiation in hydrogen-air mixtures due to focusing of a shock wave reflected inside a wedge. Both numerical and experimental investigations were conducted. Comparison of numerical and experimental results made it possible to validate the developed 3D transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen-air mixtures. Kinetic schemes and turbulence models were improved based on comparison of numerical and experimental results. Several different flow scenarios manifest in the reflection of shock waves all being dependent on the incident shock wave intensity: reflection of the shock wave with lagging behind the combustion zone, formation of a detonation wave in reflection and focusing, and intermediate transient regimes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.B. Betelin, N.N. Smirnov, V.F. Nikitin, Acta Astronaut. 109, 269 (2015)

    Article  ADS  Google Scholar 

  2. N.M. Marinov, W.J. Pitz, C.K. Westbrook, M. Hori, N. Matsunaga, An Experimental and Kinetic Calculation of the Promotion Effect of Hydrocarbons on the NO-NO$_{2}$ Conversion in a Flow Reactor, in Proceedings of the Combustion Institute, Vol. 27 (1998) pp. 389-396 (UCRL-JC-129372) UCRL-WEB-204236

  3. R.J. Kee, J.A. Miller, T.H. Jefferson, Chemkin: a general-purpose, problem-independent, transportable Fortran chemical kinetics code package, Sandia National Laboratories Report SAND80-8003 (1980)

  4. S. Browne, J. Ziegler, J.E. Shepherd, Numerical Solution Methods for Shock and Detonation Jump Conditions, GALCIT Report FM2006.006, July 2004-Revised August 29, 2008

  5. S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis, NASA RP-1311, October 1994

  6. Z.G. Pozdnyakov, B.D. Rossi, Handbook of Industrial Explosives and Means of Blasting (M. Nedra, 1977)

  7. E.J. Orlova, Chemistry and Technology of High Explosives, Textbook for universities, 3rd edition (L. “Chemistry”, Leningrad branch, 1981)

  8. U. Maas, J. Warnatz, Combus. Flame 74, 53 (1988)

    Article  Google Scholar 

  9. N.N. Smirnov, V.F. Nikitin, Int. J. Hydrog. Energy 39, 1122 (2014)

    Article  Google Scholar 

  10. N.N. Smirnov, V.B. Betelin, R.M. Shagaliev, V.F. Nikitin, I.M. Belyakov, Yu.N. Deryuguin, S.V. Aksenov, D.A. Korchazhkin, Int. J. Hydrog. Energy 39, 10748 (2014)

    Article  Google Scholar 

  11. N.N. Smirnov, V.B. Betelin, V.F. Nikitin, Yu.G. Phylippov, Jaye Koo, Acta Astronaut. 104, 134 (2014)

    Article  ADS  Google Scholar 

  12. NVIDIA CUDA, Programming Guide, 2016, http://developer.nvidia.com/cuda-downloads

  13. J.T. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 3d edition (Springer, 2002)

  14. B. van Leer, J. Comput. Phys. 32, 101 (1979)

    Article  ADS  Google Scholar 

  15. M.-S. Liou, J. Comput. Phys. 129, 364 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Fletcher, Computational Methods in Fluid Dynamics, in 2 volumes (Wiley, New York, 1991) English translation

  17. E.A. Novikov, L-stable (4,2)-method of fourth order to solve hard problems, Vestnik SamGU -- Natural Science Series B, Vol. 8(89) (2011) pp. 59--68

  18. B. Koren, A robust upwind discretisation method for advection, diffusion and source terms, in Numerical Methods for Advection -- Diffusion Problems, edited by C.B. Vreugdenhil, B. Koren (Braunschweig, Vieweg, 1993) p. 117, ISBN: 3-528-07645-3

  19. N.N. Smirnov, V.F. Nikitin, Sh. Alyari-Shourekhdeli, Combus. Explos. Shock Waves 44, 517 (2008)

    Article  Google Scholar 

  20. N.N. Smirnov, V.F. Nikitin, Yu.G. Phylippov, J. Eng. Phys. Thermophys. 83, 1287 (2010)

    Article  Google Scholar 

  21. N.N. Smirnov, V.F. Nikitin, S. Alyari Shurekhdeli, J. Propuls. Power 25, 593 (2009)

    Article  Google Scholar 

  22. V.F. Nikitin, V.R. Dushin, Y.G. Phylippov, J.C. Legros, Acta Astronaut. 64, 281 (2009)

    Article  ADS  Google Scholar 

  23. Y. Wang, J. Wang, Y. Li, Y. Li, Int. J. Hydrog. Energy 39, 11792 (2014)

    Article  Google Scholar 

  24. A. Heidari, J.X. Wen, Int. J. Hydrog. Energy 39, 21317 (2014)

    Article  Google Scholar 

  25. Dan Wu, Yan Liu, Yusi Liu, Jianping Wang, Int. J. Hydrog. Energy 39, 15803 (2014)

    Article  Google Scholar 

  26. Yu.G. Phylippov, V.R. Dushin, V.F. Nikitin, V.A. Nerchenko, N.V. Korolkova, V.M. Guendugov, Acta Astronaut. 76, 115 (2012)

    Article  ADS  Google Scholar 

  27. Min-cheol Gwak, Younghun Lee, Ki-hong Kim, Jack J. Yoh, Int. J. Hydrog. Energy 40, 3006 (2015)

    Article  Google Scholar 

  28. Yuhui Wang, Jianping Wang, Int. J. Hydrog. Energy 40, 7949 (2015)

    Article  Google Scholar 

  29. F.A. Bykovskii, S.A. Zhdan, E.F. Vedernikov, A.N. Samsonov, A.S. Zintsova, Combust. Explos. Shock Waves 52, 446 (2016)

    Article  Google Scholar 

  30. F.A. Bykovskii, S.A. Zhdan, E.F. Vedernikov, Combust. Explos. Shock Waves 52, 371 (2016)

    Article  Google Scholar 

  31. F. Falempin, Tuijin Jishu/J. Propuls. Technol. 31, 650 (2010)

    Google Scholar 

  32. F. Jouot, G. Dupré, A. Quilgars, I. Gökalp, E. Cliquet, Proc. Combust. Inst. 33, 2235 (2011)

    Article  Google Scholar 

  33. G. Roy, S. Frolov, K. Kailasanath, N. Smirnov (Editors), Gaseous and Heterogeneous Detonations: Science to Applications (ENAS Publ., Moscow, 1999) ISBN: 5-89055-016-0

  34. Gene M. Amdahl, Computer 46, 38 (2013)

    Article  Google Scholar 

  35. N.N. Smirnov, Acta Astronaut. 126, 497 (2016)

    Article  ADS  Google Scholar 

  36. G.A. Sod, J. Comput. Phys. 27, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  37. R. Liska, B. Wendroff, SIAM J. Sci. Comput. 25, 995 (2003)

    Article  MathSciNet  Google Scholar 

  38. N.N. Smirnov, V.B. Betelin, V.F. Nikitin, L.I. Stamov, D.I. Altoukhov, Acta Astronaut. 117, 338 (2015)

    Article  ADS  Google Scholar 

  39. N.N. Smirnov, V.F. Nikitin, L.I. Stamov, V.A. Nerchenko, V.V. Tyrenkova, Int. J. Comput. Methods 14, 1750038 (2017)

    Article  MathSciNet  Google Scholar 

  40. N.N. Smirnov, O.G. Penyazkov, K.L. Sevrouk, V.F. Nikitin, L.I. Stamov, V.V. Tyurenkova, Acta Astronaut. 135, 114 (2017)

    Article  ADS  Google Scholar 

  41. V.V. Martynenko, O.G. Penyaz’kov, K.A. Ragotner, S.I. Shabunya, J. Eng. Phys. Thermophys. 77, 785 (2004)

    Article  Google Scholar 

  42. O.G. Penyazkov, K.A. Ragotner, A.J. Dean, B. Varatharajan, Proc. Combust. Inst. 30, 1941 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, N.N., Penyazkov, O.G., Sevrouk, K.L. et al. Nonequilibrium processes in meta-stable media. Eur. Phys. J. E 41, 66 (2018). https://doi.org/10.1140/epje/i2018-11672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11672-1

Keywords

Navigation