Skip to main content
Log in

Taylor-Green vortex simulation using CABARET scheme in a weakly compressible formulation

The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In present paper we recall the canonical Taylor-Green vortex problem solved by in-house implementation of the novel CABARET numerical scheme in weakly compressible formulation. The simulations were carried out on the sequence of refined grids with \( 64^3\), \( 128^3\), \( 256^3\) cells at various Reynolds numbers corresponding to both laminar (\({\rm Re}=100, 280\)) and turbulent (\({\rm Re}=1600, 4000\)) vortex decay scenarios. The features of the numerical method are discussed in terms of the kinetic energy dissipation rate and integral enstrophy curves, temporal evolution of the spanwise vorticity, energy spectra and spatial correlation functions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G.I. Taylor, A.E. Green, Proc. R. Soc. London, Ser. A 158, 499 (1937)

    Article  ADS  Google Scholar 

  2. S. Goldstein, Lond. Edinb. Dublin. Philos. Mag. 30, 85 (1940)

    Article  Google Scholar 

  3. M. Brachet, D. Meiron, S. Orszag, B. Nickel, R. Morf, U. Frisch, J. Fluid Mech. 130, 411 (1983)

    Article  ADS  Google Scholar 

  4. S. Orszag, Numerical simulation of the Taylor-Green vortex (Springer Berlin Heidelberg, Berlin, Heidelberg, 1974) pp. 50--64

  5. L. Berselli, J. Math. Fluid Mech. 7, S164 (2005)

    Article  MathSciNet  Google Scholar 

  6. D. Drikakis, C. Fureby, F.F. Grinstein, D. Youngs, J. Turbul. 8, N20 (2007) DOI: https://doi.org/10.1080/14685240701250289

    Article  ADS  Google Scholar 

  7. E.V. Koromyslov, M.V. Usanin, L.Y. Gomzikov, A.A. Siner, Comput. Contin. Mech. 8, 24 (2015) (Utilization of high order DRP-type schemes and large eddy simulation based on relaxation filtering for turbulent gas flow computations in the case of Taylor-Green vortex breakdown

    Article  Google Scholar 

  8. V. Goloviznin, S. Karabasov, T. Kozubskaya, N. Maksimov, Comput. Math. Math. Phys. 49, 2168 (2009)

    Article  MathSciNet  Google Scholar 

  9. C. Tam, J. Webb, J. Comput. Phys. 107, 262 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Taguelmimt, L. Danaila, A. Hadjadj, Flow Turbul. Combust. 96, 163 (2016)

    Article  Google Scholar 

  11. L.G. Margolin, W.J. Rider, F.F. Grinstein, J. Turbul. 7, N15 (2006)

    Article  ADS  Google Scholar 

  12. I. Shirokov, T. Elizarova, J. Turbul. 15, 707 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. Kulikov, E. Son, J. Phys.: Conf. Ser. 774, 012094 (2016)

    Google Scholar 

  14. Y. Kulikov, E. Son, Comput. Res. Model. 9, 881 (2017) DOI: https://doi.org/10.20537/2076-7633-2017-9-6-881-903

    Article  Google Scholar 

  15. Y. Kulikov, E. Son, J. Phys.: Conf. Ser. 946, 012075 (2017)

    Google Scholar 

  16. Y. Kulikov, E. Son, Thermophys. Aeromech. 24, 909 (2017)

    Article  Google Scholar 

  17. V. Goloviznin, A. Samarskii, Matem. Mod. 10, 86 (1998)

    Google Scholar 

  18. V. Goloviznin, A. Samarskii, Matem. Mod. 10, 101 (1998)

    Google Scholar 

  19. A. Iserles, IMA J. Numer. Anal. 6, 381 (1986)

    Article  MathSciNet  Google Scholar 

  20. V. Goloviznin, S. Karabasov, I. Kobrinskiy, Math. Models Comput. Simul. 15, 29 (2003)

    Google Scholar 

  21. V. Goloviznin, Matem. Mod. 18, 14 (2006)

    Google Scholar 

  22. M. Ivanov, A. Kiverin, S. Pinevich, I. Yakovenko, J. Phys.: Conf. Ser. 754, 102003 (2016)

    Google Scholar 

  23. V. Ostapenko, Matem. Mod. 21, 29 (2009)

    Google Scholar 

  24. V. Ostapenko, Comput. Math. Math. Phys. 52, 387 (2012)

    Article  MathSciNet  Google Scholar 

  25. S. Karabasov, V. Goloviznin, AIAA J. 45, 2801 (2007)

    Article  Google Scholar 

  26. V. Semiletov, S. Karabasov, J. Comput. Phys. 253, 157 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. A.V. Danilin, A.V. Solovjev, A.M. Zaitsev, Numer. Methods Program. 18, 1 (2017) (A modification of the CABARET scheme for numerical simulation of one-dimensional detonation flows using a one-stage irreversible model of chemical kinetics

    Google Scholar 

  28. S. Karabasov, P. Berloff, V. Goloviznin, Ocean Model. 30, 155 (2009)

    Article  ADS  Google Scholar 

  29. V. Glotov, V. Goloviznin, Math. Models Comput. Simul. 4, 144 (2012)

    Article  MathSciNet  Google Scholar 

  30. V. Glotov, V. Goloviznin, Comput. Math. Math. Phys. 53, 721 (2013)

    Article  MathSciNet  Google Scholar 

  31. O. Kovyrkina, V. Ostapenko, Math. Models Comput. Simul. 5, 180 (2013)

    Article  MathSciNet  Google Scholar 

  32. O. Kovyrkina, V. Ostapenko, Dokl. Math. 91, 323 (2015)

    Article  MathSciNet  Google Scholar 

  33. V. Goloviznin, M. Zaytsev, S. Karabasov, I. Korotkin, Novel Algorithms of Computational Hydrodynamics for Multicore Computing (Moscow University Press, 2013)

  34. J. DeBonis, Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods, in Aerospace Sciences Meetings (American Institute of Aeronautics and Astronautics, 2013) p. 0382

  35. M. Brachet, Fluid Dyn. Res. 8, 1 (1991)

    Article  ADS  Google Scholar 

  36. K. Hillewaert, Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600, in 2nd International Workshop on High-Order CFD Methods (Sponsored by DLR, AIAA and AFOSR, 2013)

  37. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, 1995)

  38. S. Jammy, C. Jacobs, N. Sandham, Enstrophy and kinetic energy data from 3D Taylor-Green vortex simulations https://eprints.soton.ac.uk/401892/ (2016)

  39. M. Lesieur, S. Ossia, J. Turbul. 1, N7 (2000)

    Article  ADS  Google Scholar 

  40. L. Skrbek, S. Stalp, Phys. Fluids 12, 1997 (2000)

    Article  ADS  Google Scholar 

  41. R. Stepanov, F. Plunian, M. Kessar, G. Balarac, Phys. Rev. E 90, 053309 (2014)

    Article  ADS  Google Scholar 

  42. P. Davidson, Turbulence: An Introduction for Scientists and Engineers (OUP Oxford, 2004)

  43. P.L. O’Neill, D. Nicolaides, D. Honnery, J. Soria, Autocorrelation Functions and the Determination of Integral Length with Reference to Experimental and Numerical Data, in Proceedings of 15th Australasian Fluid Mechanics Conference, 13--17 December 2004, The University of Sydney, edited by M. Behnia, W. Lin, G. D. McBain (The University of Sydney, Sydney NSW, Australia, 2006) ISBN: 1-864-87695-6 (CD-ROM)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury M. Kulikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, Y.M., Son, E.E. Taylor-Green vortex simulation using CABARET scheme in a weakly compressible formulation. Eur. Phys. J. E 41, 41 (2018). https://doi.org/10.1140/epje/i2018-11645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11645-4

Keywords

Navigation