Skip to main content
Log in

Exciton dynamics in amide-I \( \alpha\) -helix protein chains with long-range intermolecular interactions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The amide-I \(\alpha\) -helix protein is a long molecular chain made up of regularly spaced peptide groups interacting via C=O bonds. According to the current theory the energy released by hydrolyzed adenosine triphosphate is carried across the protein via vibration modes, caused by C=O bond stretchings which, in the presence of anharmonic molecular vibrations, can promote nonlinear localized excitations called excitons. In this work the effects of long-range interactions between amide-I molecules on the modulational instability of small-amplitude excitons, and on characteristic parameters of soliton wavetrain-type excitons, are investigated with emphasis on long-range interactions saturating at finite intermolecular interaction ranges. It is found that long-range interactions strongly affect the dispersion of vibration modes of the protein chain, causing a narrowing of the modulational-instability regions for small-amplitude excitons. Characteristic parameters of the exciton soliton wavetrain, including its velocity, tail and average width (i.e., the exciton width at half tail), are drastically enhanced with respect to their values when only the short-range interaction is considered. The results suggest a sizable increase of the energy carried by excitons along the protein chain above predictions based on short-range considerations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Falvo, V. Pouthier, J. Chem. Phys. 123, 184709 (2005)

    Article  ADS  Google Scholar 

  2. C. Falvo, V. Pouthier, J. Chem. Phys. 123, 184710 (2005)

    Article  ADS  Google Scholar 

  3. A.S. Davydov, N.I. Kislukha, Phys. Status Solidi B 59, 465 (1973)

    Article  ADS  Google Scholar 

  4. A.C. Scott, Phys. Rep. 217, 1 (1992)

    Article  ADS  Google Scholar 

  5. K.D. Zhu, T. Kobayashi, Phys. Lett. A 196, 105 (1994)

    Article  ADS  Google Scholar 

  6. Y. Xiao, W.H. Hai, Phys. Lett. A 209, 99 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  7. Y. Xiao, Y. Huang, X. Lin, Phys. Lett. A 235, 299 (1997)

    Article  ADS  Google Scholar 

  8. S.F. Mingaleev, P.L. Christiansen, Y.B. Gaididei, M. Johansson, K.. Rasmussen, J. Biol. Phys. 25, 41 (1999)

    Article  Google Scholar 

  9. L. Cruzeiro, J. Biol. Phys. 35, 43 (2009)

    Article  Google Scholar 

  10. S. Takeno, J. Biol. Phys. 24, 185 (1999)

    Article  Google Scholar 

  11. A.S. Davydov, Soliton in Molecular Systems (D. Reidel, Dordrecht, 1985)

  12. P.L. Christiansen, A.C. Scott, Davydov Soliton Revisited (Plenum, New York, 1990)

  13. Z. Sinkala, J. Theor. Biol. 241, 919 (2006)

    Article  MathSciNet  Google Scholar 

  14. P. Hamm, M. Lim, R.M. Hochstrasser, J. Phys. Chem. B 102, 6123 (1998)

    Article  Google Scholar 

  15. S. Woutersen, P. Hamm, J. Phys.: Condens. Matter 14, R1035 (2002)

    ADS  Google Scholar 

  16. F.D. Adame, Phys. Lett. A 217, 59 (1996)

    Article  ADS  Google Scholar 

  17. A.T. Hagler, E. Huler, S. Lifson, J. Am. Chem. Soc. 96, 5319 (1974)

    Article  Google Scholar 

  18. C.N. Pace, J.M. Scholtz, G.R. Grimsley, FEBS Lett. 588, 2177 (2014)

    Article  Google Scholar 

  19. A.F. Lawrence, J.C. McDaniel, D.B. Chang, R.R. Birge, Biophys. J. 51, 785 (1987)

    Article  Google Scholar 

  20. S. Krimm, Y. Abe, Proc. Natl. Acad. Sci. U.S.A. 69, 2788 (1972)

    Article  ADS  Google Scholar 

  21. A.M. Dikandé, Phys. Lett. A 220, 335 (1996)

    Article  ADS  Google Scholar 

  22. M. Kac, E. Helfand, J. Math. Phys. 4, 1078 (1963)

    Article  ADS  Google Scholar 

  23. G.A. Baker jr., Phys. Rev. 130, 1406 (1963)

    Article  ADS  Google Scholar 

  24. A.M. Dikandé, T.C. Kofané, Physica D 83, 450 (1995)

    Article  ADS  Google Scholar 

  25. A.M. Dikandé, Phys. Lett. A 369, 146 (2007)

    Article  ADS  Google Scholar 

  26. S.K. Sarker, J.A. Krumhansl, Phys. Rev. B 23, 2374 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  27. R.J. Glauber, Phys. Rev. 131, 776 (1958)

    MathSciNet  Google Scholar 

  28. T.B. Benjamin, Proc. R. Soc. A 299, 59 (1967)

    Article  ADS  Google Scholar 

  29. V.E. Zakharov, L.A. Ostrovsky, Physica D 238, 540 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. A.M. Dikandé, Eur. Phys. J. B 55, 397 (2007)

    Article  ADS  Google Scholar 

  31. V.B. Mborong, A.M. Dikandé, Int. J. Quantum Chem. 108, 189 (2008)

    Article  ADS  Google Scholar 

  32. A.M. Dikandé, Phys. Rev. A 81, 013821 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain M. Dikandé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nji Nde Aboringong, E., M. Dikandé, A. Exciton dynamics in amide-I \( \alpha\) -helix protein chains with long-range intermolecular interactions. Eur. Phys. J. E 41, 35 (2018). https://doi.org/10.1140/epje/i2018-11640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11640-9

Keywords

Navigation