Skip to main content
Log in

Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Microstructured surfaces with continuous solid topography have many potential applications in biology and industry. To understand the liquid transport property of microstructured surfaces with continuous solid topography, we studied the sliding behavior of a droplet on microhole-structured surfaces. We found that the sliding friction of the droplet increased with increasing solid area fraction due to enlarged apparent contact area and enhanced contact angle hysteresis. By introducing a correction factor to the modified Cassie-Baxter relation, we proposed an improved theoretical model to better predict the apparent receding contact angle. Our experimental data also revealed that the geometric topology of surface microstructures could affect the sliding friction with microhole-decorated surfaces, exhibiting a larger resistance than that for micropillar-decorated surfaces. Assisted by optical microscopy, we attributed this topology effect to the continuity and the true total length of the three-phase contact line at the receding edge during the sliding. Our study provides new insights into the liquid sliding behavior on microstructured surfaces with different topologies, which may help better design functional surfaces with special liquid transport properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Koch, B. Bhushan, W. Barthlott, Prog. Mater. Sci. 54, 137 (2009)

    Article  Google Scholar 

  2. N.J. Shirtcliffe, G. McHale, M.I. Newton, G. Chabrol, C.C. Perry, Adv. Mater. 16, 1929 (2004)

    Article  Google Scholar 

  3. E. Celia, T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard, J. Colloid Interface Sci. 402, 1 (2013)

    Article  ADS  Google Scholar 

  4. H.Y. Guo, Q. Li, H.-P. Zhao, K. Zhou, X.Q. Feng, RSC Adv. 5, 66901 (2015)

    Article  Google Scholar 

  5. K. Lin, D. Zang, X. Geng, Z. Chen, Eur. Phys. J. E 39, 15 (2016)

    Article  Google Scholar 

  6. J.L. Liu, X.Q. Feng, G. Wang, S.-W. Yu, J. Phys.: Condes. Matter 19, 356002 (2007)

    Google Scholar 

  7. R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Langmuir 21, 956 (2005)

    Article  Google Scholar 

  8. C. Neinhuis, W. Barthlott, Ann. Bot. 79, 667 (1997)

    Article  Google Scholar 

  9. K. Liu, L. Jiang, Annu. Rev. Mater. Res. 42, 231 (2012)

    Article  ADS  Google Scholar 

  10. B. Bhushan, Y.C. Jung, Prog. Mater. Sci. 56, 1 (2011)

    Article  Google Scholar 

  11. G.D. Bixler, B. Bhushan, Nanoscale 6, 76 (2014)

    Article  ADS  Google Scholar 

  12. G.D. Bixler, B. Bhushan, Nanoscale 5, 7685 (2013)

    Article  ADS  Google Scholar 

  13. G.D. Bixler, B. Bhushan, Crit. Rev. Solid State 40, 1 (2015)

    Article  Google Scholar 

  14. M.G. Simon, A.P. Lee, Microdroplet Technology (Springer, New York, 2012) DOI: 10.1007/978-1-4614-3265-4_2

  15. O.I. Vinogradova, A.L. Dubov, Mendeleev Commun. 22, 229 (2012)

    Article  Google Scholar 

  16. S.Y. Xing, R.S. Harake, T.R. Pan, Lab Chip 11, 3642 (2011)

    Article  Google Scholar 

  17. F. Mumm, A.T.J. van Helvoort, P. Sikorski, ACS Nano 3, 2647 (2009)

    Article  Google Scholar 

  18. P. Hao, C. Lv, Z. Yao, F. He, EPL 90, 66003 (2010)

    Article  ADS  Google Scholar 

  19. C. Lv, C. Yang, P. Hao, F. He, Q. Zheng, Langmuir 26, 8704 (2010)

    Article  Google Scholar 

  20. S. Qiao, S. Li, Q. Li, B. Li, K. Liu, X.Q. Feng, Langmuir 33, 13480 (2017)

    Article  Google Scholar 

  21. N. Anantharaju, M.V. Panchagnula, S. Vedantam, S. Neti, S. Tatic-Lucic, Langmuir 23, 11673 (2007)

    Article  Google Scholar 

  22. S. Suzuki, K. Ueno, Langmuir 33, 138 (2017)

    Article  Google Scholar 

  23. D.M. Spori, T. Drobek, S. Zurcher, N.D. Spencer, Langmuir 26, 9465 (2010)

    Article  Google Scholar 

  24. Y. Liu, Z. Wang, Sci. Rep. 6, 33817 (2016)

    Article  ADS  Google Scholar 

  25. Z. Li, X. Ma, D. Zang, B. Shang, X. Qiang, Q. Hong, X. Guan, RSC Adv. 4, 49655 (2014)

    Article  Google Scholar 

  26. Z. Li, X. Ma, D. Zang, Q. Hong, X. Guan, RSC Adv. 5, 21084 (2015)

    Article  Google Scholar 

  27. Y. Zhao, M. Zhang, Z. Wang, Adv. Mater. Interfaces 3, 1500664 (2016)

    Article  Google Scholar 

  28. C.W. Extrand, Y. Kumagai, J. Colloid Interface Sci. 170, 515 (1995)

    Article  ADS  Google Scholar 

  29. C.W. Extrand, A.N. Gent, J. Colloid Interface Sci. 138, 431 (1990)

    Article  ADS  Google Scholar 

  30. W. Choi, A. Tuteja, J.M. Mabry, R.E. Cohen, G.H. McKinley, J. Colloid Interface Sci. 339, 208 (2009)

    Article  ADS  Google Scholar 

  31. C. Priest, T.W. Albrecht, R. Sedev, J. Ralston, Langmuir 25, 5655 (2009)

    Article  Google Scholar 

  32. S.F. Chini, V. Bertola, A. Amirfazli, Colloids Surf. A 436, 425 (2013)

    Article  Google Scholar 

  33. A.I. ElSherbini, A.M. Jacobi, J. Colloid Interface Sci. 299, 841 (2006)

    Article  ADS  Google Scholar 

  34. R.A. Brown, F.M. Orr jr., L.E. Scriven, J. Colloid Interface Sci. 73, 76 (1980)

    Article  ADS  Google Scholar 

  35. A. Carre, M.E.R. Shanahan, J. Adhes. 49, 177 (2006)

    Article  Google Scholar 

  36. D. Öner, T.J. McCarthy, Langmuir 16, 7777 (2000)

    Article  Google Scholar 

  37. Z.Q. Wang, E. Chen, Y.P. Zhao, Sci. China Technol. Sci. 61, 309 (2018)

    Article  Google Scholar 

  38. E. Chen, Q. Yuan, X. Huang, Y.P. Zhao, J. Adhes. Sci. Technol. 30, 2265 (2016)

    Article  Google Scholar 

  39. X.Q. Feng, Y.P. Cao, B. Li, Surface Wrinkling Mechanics of Soft Materials (China Science Press, Beijing, 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qiao Feng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, S., Li, Q. & Feng, XQ. Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces. Eur. Phys. J. E 41, 25 (2018). https://doi.org/10.1140/epje/i2018-11631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11631-x

Keywords

Navigation