Skip to main content
Log in

Simulations of microscopic propulsion of soft elastic bodies

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Using simulations that realistically model both hydrodynamic and elastic behavior, we study the motion of a microscopic, driven elastic sphere immersed in water. We first confirm the “jittery” relaxation recently predicted theoretically for an externally driven elastic sphere. The sphere is then divided in two and each section is driven internally with the two sections 180° out of phase. With periodic and perfectly symmetric driving, the elastic sphere spontaneously breaks symmetry and can attain macroscopic average swimming velocities to the right or left, the direction depending only on the initial state. With asymmetric driving the elastic sphere swims in one direction and the maximum speed is obtained with a 1/3:2/3 split. At high drive frequencies close to elastic resonances of the sphere, the motion can be quite efficient. At low drive frequencies the propulsion speed becomes independent of the elastic constants of the sphere and less efficient, but still substantial. Inertia is found to be an important driver of the behavior despite the small size of the spheres. As we model the full three-dimensional elasticity and compressible hydrodynamics, our simulations give not just qualitative indications but quantitative predictions for the motion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Habibi, C. Denniston, M. Karttunen, EPL 108, 28005 (2014)

    Article  ADS  Google Scholar 

  2. J.L. McWhirter, H. Noguchi, G. Gompper, Soft Matter 7, 10967 (2011)

    Article  ADS  Google Scholar 

  3. H. Noguchi, G. Gompper, Phys. Rev. Lett. 98, 128103 (2007)

    Article  ADS  Google Scholar 

  4. S.T.T. Ollila, C. Denniston, T. Ala-Nissila, Phys. Rev. E 87, 050302 (2013)

    Article  ADS  Google Scholar 

  5. B.P. Ho, L.G. Leal, J. Fluid Mech. 65, 365 (1974)

    Article  ADS  Google Scholar 

  6. D. Di Carlo, Lab Chip 9, 3038 (2009)

    Article  Google Scholar 

  7. A.J. Mach, J.H. Kim, A. Arshi, S.C. Hur, D. Di Carlo, Lab Chip 11, 2827 (2011)

    Article  Google Scholar 

  8. M. Masaeli, E. Sollier, H. Amini, W. Mao, K. Camacho, N. Doshi, S. Mitragotri, A. Alexeev, D. Di Carlo, Phys. Rev. X 2, 031017 (2012)

    Google Scholar 

  9. G. Segr, A. Silberberg, Nature 189, 209 (1961)

    Article  ADS  Google Scholar 

  10. B.J. Alder, T.E. Wainwright, Phys. Rev. A 1, 18 (1970)

    Article  ADS  Google Scholar 

  11. R. Zwanzig, M. Bixon, Phys. Rev. A 2, 2005 (1970)

    Article  ADS  Google Scholar 

  12. E. Hauge, A. Martin-Löf, J. Stat. Phys. 7, 259 (1972)

    Article  ADS  Google Scholar 

  13. R. Dreyfus, J. Baudry, M. Roper, M. Fermigier, H. Stone, J. Bibette, Nature 437, 862 (2005)

    Article  ADS  Google Scholar 

  14. T. Qiu, T.-C. Lee, A. Mark, K. Mrozov, R. Mnster, O. Mierka, S. Turek, A. Leshansky, P. Fischer, Nat. Commun. 5, 5119 (2014)

    Article  Google Scholar 

  15. E. Lauga, Soft Matter 7, 3060 (2011)

    Article  ADS  Google Scholar 

  16. E. Purcell, Am. J. Phys. 45, 3 (1977)

    Article  ADS  Google Scholar 

  17. V. García-López, P.-T. Chiang, F. Chen, G. Ruan, A.A. Martí, A.B. Kolomeisky, G. Wang, J.M. Tour, Nano Lett. 15, 8229 (2015)

    Article  ADS  Google Scholar 

  18. A. Lindner, M. Shelley, Elastic fibers in flows, in Fluid-Structure Interactions in Low-Reynolds-Number Flows (The Royal Society of Chemistry, 2016) pp. 168--192

  19. E.D. Tytell, C.-Y. Hsu, T.L. Williams, A.H. Cohen, L.J. Fauci, Proc. Natl. Acad. Sci. U.S.A. 107, 19832 (2010)

    Article  ADS  Google Scholar 

  20. E.D. Tytell, M.C. Leftwich, C.-Y. Hsu, B.E. Griffith, A.H. Cohen, A.J. Smits, C. Hamlet, L.J. Fauci, Phys. Rev. Fluids 1, 073202 (2016)

    Article  ADS  Google Scholar 

  21. B.U. Felderhof, Phys. Rev. 89, 033001 (2014)

    ADS  Google Scholar 

  22. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  23. F. Mackay, S.T.T. Ollila, C. Denniston, Comput. Phys. Commun. 184, 2021 (2013)

    Article  ADS  Google Scholar 

  24. F. Mackay, C. Denniston, J. Comput. Phys. 237, 289 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. S.T.T. Ollila, C.J. Smith, T. Ala-Nissila, C. Denniston, Multiscale Model. Simul. 11, 213 (2013)

    Article  MathSciNet  Google Scholar 

  26. N. Aschcroft, N. Mermin, Solid State Physics (Saunders College, 1976)

  27. A.M. Colinsworth, S. Zhang, W.E. Kraus, G.A. Truskey, Am. J. Cell Physiol. 283, C1219 (2002)

    Article  Google Scholar 

  28. W.-C. Yeh, P.-C. Li, Y.-M. Jeng, H.-C. Hsu, P.-L. Kuo, M.-L. Li, P.-M. Yang, P.H. Lee, Ultrasound Med. Biol. 28, 467 (2002)

    Article  Google Scholar 

  29. M. Loferer-Krößbacher, J. Klima, R. Psenner, Appl. Environ. Microbiol. 64, 688 (1998)

    Google Scholar 

  30. S.T.T. Ollila, C. Denniston, M. Karttunen, T. Ala-Nissila, Phys. Rev. Lett. 112, 118301 (2014)

    Article  ADS  Google Scholar 

  31. F.E. Mackay, K. Pastor, M. Karttunen, C. Denniston, Soft Matter 10, 8724 (2014)

    Article  ADS  Google Scholar 

  32. M.M.T. Alcanzare, V. Thakore, S.T.T. Ollila, M. Karttunen, T. Ala-Nissila, Soft Matter 13, 2148 (2017)

    Article  ADS  Google Scholar 

  33. A. Antipova, C. Denniston, Soft Matter 12, 1279 (2016)

    Article  ADS  Google Scholar 

  34. A. Antipova, C. Denniston, Phys. Rev. E 94, 052704 (2016)

    Article  ADS  Google Scholar 

  35. L.D. Landau, E. Lifshitz, Theory of Elasticity (Pergamon Press, 1959)

  36. V. Galstyan, O.S. Pak, H.A. Stone, Phys. Fluids 27, 032001 (2015)

    Article  ADS  Google Scholar 

  37. Landau, Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1960)

  38. S.E. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  39. K. Machin, J. Exp. Biol. 35, 796 (1958)

    Google Scholar 

  40. C.H. Wiggins, R.E. Goldstein, Phys. Rev. Lett. 80, 3879 (1998)

    Article  ADS  Google Scholar 

  41. T.S. Yu, E. Lauga, A.E. Hosoi, Phys. Fluids 18, 091701 (2006)

    Article  ADS  Google Scholar 

  42. R. Ledesma-Aguilar, H. Löwen, J.M. Yeomans, Eur. Phys. J. E 35, 70 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Denniston.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbanik, D., Mani Dwivedi, S. & Denniston, C. Simulations of microscopic propulsion of soft elastic bodies. Eur. Phys. J. E 41, 24 (2018). https://doi.org/10.1140/epje/i2018-11629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11629-4

Keywords

Navigation