Skip to main content
Log in

Coalescence of droplets laden with insoluble surfactant on a preset liquid film

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A model for the evolution of two droplets laden with insoluble surfactant coalescing on a preset film is established according to the lubrication theory, and the coalescence processes are simulated. The role of the surfactant and its inherent mechanism are investigated, the effects of the Marangoni number, the preset liquid film thickness and the initial spacing between the two droplets on the coalescence are examined. The results show that the droplets encounter each other, gradually overlap, and finally coalesce into a “new” droplet. The Marangoni effect is beneficial to the convergence of the two inner leading fronts of the droplets in the early stage, but it hinders the accumulation of the droplets and subsequent coalescence. Increasing the Marangoni number promotes not only the aforementioned inhibition, but also the convergence of the two leading fronts towards the center, which speeds up the coalescence of the surfactant. Moreover, the diffusion of the surfactant towards the outsides of the droplets is accelerated; hence, its distribution along the droplet surface is more uniform after the coalescence. The droplets and the surfactant undertake a longer “journey” to achieve coalescence when their initial spacing is increased; increasing the preset film thickness shortens the time of coalescence required.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Oprisan, S.A. Oprisan, J.J. Hegseth, Y. Garrabos, D. Beysens, Eur. Phys. J. E 37, 85 (2014)

    Article  Google Scholar 

  2. R. Borcia, M. Bestehorn, Eur. Phys. J. E 34, 81 (2011)

    Article  Google Scholar 

  3. D.G.A.L. Aarts, H.N.W. Lekkerkerker, H. Guo, G.H. Wegdam, D. Bonn, Phys. Rev. Lett. 95, 164503 (2005)

    Article  ADS  Google Scholar 

  4. J. Qian, C.K. Law, J. Fluid Mech. 331, 59 (1997)

    Article  ADS  Google Scholar 

  5. S. Arditty, C.P. Whitby, B.P. Binks, V. Schmitt, F. Lealcalderon, Eur. Phys. J. E 11, 273 (2003)

    Article  Google Scholar 

  6. D. Zang, Y. Yu, C. Zhen et al., Adv. Colloid Interface Sci. 243, 77 (2017)

    Article  Google Scholar 

  7. H. Gu, M.H.G. Duits, F. Mugele, Int. J. Mol. Sci. 12, 2572 (2011)

    Article  Google Scholar 

  8. C. Vannozzi, Phys. Fluids 24, 082101 (2012)

    Article  ADS  Google Scholar 

  9. C. Zhen, D. Zang, L. Zhao et al., Langmuir 33, 6232 (2017)

    Article  Google Scholar 

  10. X. Liu, P. Cheng, X. Quan, Int. J. Heat Mass Transfer 73, 195 (2014)

    Article  Google Scholar 

  11. T. Jiang, L. Lu, W. Lu, Acta Phys. Sin. 62, 224701 (2013)

    Google Scholar 

  12. J.J. Monaghan, Annu. Rev. Astron. Astrophys. 30, 543 (1992)

    Article  ADS  Google Scholar 

  13. M. Liu, G. Liu, Arch. Comput. Methods Eng. 17, 25 (2010)

    Article  MathSciNet  Google Scholar 

  14. H. Aryafar, H.P. Kavehpour, Phys. Fluids 18, 072105 (2006)

    Article  ADS  Google Scholar 

  15. D.W. Martin, F. Blanchette, Phys. Fluids 27, 012103 (2015)

    Article  ADS  Google Scholar 

  16. S.T. Thoroddsen, B. Qian, T.G. Etoh, K. Takehara, Phys. Fluids 19, 072110 (2007)

    Article  ADS  Google Scholar 

  17. V. Chireux, D. Fabre, F. Risso, P. Tordjeman, Phys. Fluids 27, 062103 (2015)

    Article  ADS  Google Scholar 

  18. G. Chen, P. Tan, S. Chen, J. Huang, W. Wen, L. Xu, Phys. Rev. Lett. 110, 064502 (2013)

    Article  ADS  Google Scholar 

  19. J. Eggers, J.R. Lister, H.A. Stone, J. Fluid Mech. 401, 293 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Duchemin, J. Eggers, C. Josserand, J. Fluid Mech. 487, 167 (2003)

    Article  ADS  Google Scholar 

  21. M. Wu, T. Cubaud, C. Ho, Phys. Fluids 16, L51 (2004)

    Article  ADS  Google Scholar 

  22. S.T. Thoroddsen, K. Takehara, T.G. Etoh, J. Fluid Mech. 527, 85 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Li, PhD Thesis, North China Electric Power University, China (2011)

  24. O.E. Jensen, S. Naire, J. Fluid Mech. 554, 5 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  25. K.S. Lee, V.M. Starov, J. Colloid Interface Sci. 314, 631 (2007)

    Article  ADS  Google Scholar 

  26. A. De Witt, D. Gallez, C.I. Christov, Phys. Fluids 6, 3256 (1994)

    Article  ADS  Google Scholar 

  27. O.E. Jensen, J.B. Grotberg, Phys. Fluids A 5, 58 (1993)

    Article  ADS  Google Scholar 

  28. B.D. Edmonstone, O.K. Matar, J. Colloid Interface Sci. 274, 183 (2004)

    Article  ADS  Google Scholar 

  29. B.D. Edmonstone, O.K. Matar, R.V. Craster, Physica D 209, 62 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  30. R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009)

    Article  ADS  Google Scholar 

  31. R.V. Craster, O.K. Matar, Langmuir 23, 2588 (2007)

    Article  Google Scholar 

  32. M.R.E. Warner, R.V. Craster, O.K. Matar, Phys. Fluids 14, 4040 (2002)

    Article  ADS  Google Scholar 

  33. C. Li, P. Chen, X. Ye, Acta Phys. Sin. China 64, 14702 (2015)

    Google Scholar 

  34. X. Ye, L. Shen, C. Li, Chin. J. Comput. Phys. 30, 361 (2013)

    Google Scholar 

  35. X. Ye, L. Shen, C. Li, CIESC J. 63, 2507 (2012)

    Google Scholar 

  36. A. Akyurtlu, J.F. Akyurtlu, K.S. Denison, C.E. Hamrin jr., Comput. Chem. Eng. 10, 213 (1986)

    Article  Google Scholar 

  37. M.R.E. Warner, R.V. Craster, O.K. Matar, J. Fluid Mech. 510, 169 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  38. B. Dai, L.G. Leal, A. Redondo, Phys. Rev. E 78, 176 (2008)

    Article  Google Scholar 

  39. J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Nat. Mater. 2, 59 (2003)

    Article  ADS  Google Scholar 

  40. A.B. Afsar-Siddiqui, P.F. Luckham, O.K. Matar, Langmuir 19, 696 (2003)

    Article  Google Scholar 

  41. Q. Yuan, W. Shen, Y. Zhao, Adv. Mech. 46, 201608 (2016)

    Google Scholar 

  42. Q. Liao, S. Xing, H. Wang, J. Eng. Thermophys. 27, 319 (2006)

    Google Scholar 

  43. J. Lu, C.M. Corvalan, Chem. Eng. Sci. 78, 9 (2012)

    Article  Google Scholar 

  44. Z. Du, R. Xing, X. Cao, Polymer 115, 45 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemin Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Lin, Y., Zhang, R. et al. Coalescence of droplets laden with insoluble surfactant on a preset liquid film. Eur. Phys. J. E 41, 14 (2018). https://doi.org/10.1140/epje/i2018-11619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11619-6

Keywords

Navigation