Skip to main content
Log in

Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

This paper presents an exploration of the phase separation behavior and pattern formation in a binary fluid with temperature-dependent viscosity via a coupled lattice Boltzmann method (LBM). By introducing a viscosity-temperature relation into the LBM, the coupling effects of the viscosity-temperature coefficient \(\beta\) , initial viscosity \(\eta_{\infty}\) and thermal diffusion coefficient \( D\) , on the phase separation were successfully described. The calculated results indicated that an increase in initial viscosity and viscosity-temperature coefficient, or a decrease in the thermal diffusion coefficient, can lead to the orientation of isotropic growth fronts over a wide range of viscosity. The results showed that droplet-type phase structures and lamellar phase structures with domain orientation parallel or perpendicular to the walls can be obtained in equilibrium by controlling the initial viscosity, thermal diffusivity, and the viscosity-temperature coefficient. Furthermore, the dataset was rearranged for growth kinetics of domain growth and thermal diffusion fronts in a plot by the spherically averaged structure factor and the ratio of separated and continuous phases. The analysis revealed two different temporal regimes: spinodal decomposition and domain growth stages, which further quantified the coupled effects of temperature and viscosity on the evolution of temperature-dependent phase separation. These numerical results provide guidance for setting optimum temperature ranges to obtain expected phase separation structures for systems with temperature-dependent viscosity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Xu, G. Gonnella, A. Lamura, Phys. Rev. E 67, 115 (2003)

    Google Scholar 

  2. G. Gonnella, A. Lamura, V. Sofonea, Phys. Rev. E 76, 036703 (2007)

    Article  ADS  Google Scholar 

  3. J.D. Gunton, M.S. Migue, P. Sahni, Phase Transition and Critical Phenomena, Vol. 8 (Academic Press, London, 1983)

  4. A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, England, 2002)

  5. S.M. Dubiel, J. Zukrowski, Acta Mater. 61, 6207 (2012)

    Article  Google Scholar 

  6. D.Y. Zang, H.P. Wang, F.P. Dai, D. Langevin, B. Wei, Appl. Phys. A 102, 141 (2011)

    Article  ADS  Google Scholar 

  7. F. Corberi, G. Gonnella, A. Lamura, Phys. Rev. Lett. 83, 4057 (1999)

    Article  ADS  Google Scholar 

  8. A. Voit, A. Krekov, W. Enge, L. Kramer, W. Köhler, Phys. Rev. Lett. 94, 214501 (2005)

    Article  ADS  Google Scholar 

  9. J.K. Platten, G. Chavepeyer, Physica A 213, 110 (1995)

    Article  ADS  Google Scholar 

  10. G. Chavepeyer, J.K. Platten, M. Salajan, J. Non-Equil. Thermodyn. 21, 122 (1997)

    ADS  Google Scholar 

  11. J. Kumaki, T. Hashimoto, S. Granick, Phys. Rev. Lett. 77, 1990 (1996)

    Article  ADS  Google Scholar 

  12. J. Okinaka, Q. Tran-Cong, Physica D (Amsterdam) 84, 23 (1995)

    Article  ADS  Google Scholar 

  13. Q. Tran-Cong, J. Okinaka, J. Polym. Eng. Sci. 39, 365 (1999)

    Article  Google Scholar 

  14. M. Yamamura, S. Nakamura, T. Kajiwara, H. Kage, K. Adachi, Polymer 44, 4699 (2003)

    Article  Google Scholar 

  15. A. Onuki, Phys. Rev. Lett. 48, 753 (1982)

    Article  ADS  Google Scholar 

  16. H. Tanaka, T. Sigehuzi, Phys. Rev. Lett. 75, 874 (1995)

    Article  ADS  Google Scholar 

  17. A. Jacot, M. Rappaz, R.C. Reed, Acta Mater. 46, 3949 (1998)

    Article  Google Scholar 

  18. A.P. Krekhov, L. Kramer, Phys. Rev. E 70, 264 (2004)

    Article  Google Scholar 

  19. J.S. Langer, Rev. Mod. Phys. 52, 1 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  20. L.P. Cheng, D.J. Lin, C.H. Shih, A.H. Dwan, C.C. Gryte, J. Polym. Sci. 37, 2079 (1999)

    Article  Google Scholar 

  21. T. Antal, M. Droz, J. Magnin, Z. Racz, Phys. Rev. Lett. 83, 2880 (1999)

    Article  ADS  Google Scholar 

  22. A.J. Wagner, J.M. Yeomans, Phys. Rev. E 59, 4366 (1999)

    Article  ADS  Google Scholar 

  23. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)

  24. Y.H. Qian, D. d’Humières, P. Lallemand, Europhys. Lett. 17, 479 (1992)

    Article  ADS  Google Scholar 

  25. Ioan Pop, R.S.R. Gorla, M. Rashidi, Int. J. Eng. Sci. 30, 1 (1992)

    Article  Google Scholar 

  26. Y. Gan, A. Xu, G. Zhang, P. Zhang, Y. Li, EPL 97, 44002 (2012)

    Article  ADS  Google Scholar 

  27. X. He, L. Luo, Phys. Rev. E 55, R6333 (1997)

    Article  ADS  Google Scholar 

  28. J. Bray, Adv. Phys. 43, L357 (1994)

    Article  ADS  Google Scholar 

  29. W. Saarloos, Phys. Rep. 386, 29 (2003)

    Article  ADS  Google Scholar 

  30. S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998)

    Article  ADS  Google Scholar 

  31. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982)

  32. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)

    Article  ADS  Google Scholar 

  33. S. Puri, Kinetics of Phase Transitions, Vol. 77 (CRC Press, 2004) pp. 407--431

  34. E. Orlandini, M.R. Swift, J.M. Yeomans, Europhys. Lett. 32, 463 (1995)

    Article  ADS  Google Scholar 

  35. M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5401 (1996)

    Article  Google Scholar 

  36. N.G. Kafoussias, E.W. Williams, Int. J. Eng. Sci. 33, 1369 (1995)

    Article  Google Scholar 

  37. L.E. Reichl, A Modern Course in Statistical Physics (Arnold, London, 1980)

  38. A. Bartoloni, C. Battista, S. Cabasino, P.S. Paolucci, J. Pech, R. Sarno, G.M. Todesco, W. Torelli, P. Vicini, Int. J. Mod. Phys. C 4, 993 (1993)

    Article  ADS  Google Scholar 

  39. X. Shan, Phys. Rev. E 55, 2780 (1997)

    Article  ADS  Google Scholar 

  40. S. Hou, Q. Zou, S. Chen, G. Doolen, A.C. Cogley, J. Comput. Phys. 118, 329 (1994)

    Article  ADS  Google Scholar 

  41. A. Lammura, G. Gonnella, Physica A 294, 295 (2000)

    Article  ADS  Google Scholar 

  42. C.F. Ho, C. Chang, K.H. Lin, C.A. Lin, CMES - Comput. Model. Eng. Sci. 44, 137 (2009)

    MathSciNet  Google Scholar 

  43. F.J. Alexander, S. Chen, J.D. Sterling, Phys. Rev. E 47, R2249 (1993)

    Article  ADS  Google Scholar 

  44. Y. Chen, H. Ohashi, M. Akiyama, Phys. Rev. E 50, 2776 (1994)

    Article  ADS  Google Scholar 

  45. P. Lallemand, L.S. Luo, Phys. Rev. E 68, 036706 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Mezrhab, M. Bouzidi, P. Lallemand, Comput. Fluids 33, 623 (2004)

    Article  Google Scholar 

  47. X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146, 282 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  48. Z.L. Guo, C.G. Zheng, B.C. Shi, T.S. Zhao, Phys. Rev. E 75, 036704 (2007)

    Article  ADS  Google Scholar 

  49. G. McNamara, A.L. Garcia, B.J. Alder, J. Comput. Phys. 81, 395 (1995)

    Google Scholar 

  50. D. Hlushkou, D. Kandhai, U. Tallarek, Int. J. Numer. Methods Fluids 46, 507 (2004)

    Article  ADS  Google Scholar 

  51. A. Chatterji, J. Horbach, J. Chem. Phys. 122, 18490318 (2005)

    Article  Google Scholar 

  52. H.B. Huang, T.S. Lee, C. Shu, Int. J. Numer. Methods Fluids 53, 1707 (2007)

    Article  ADS  Google Scholar 

  53. H. Joshi, A. Agarwal, B. Puranik, C. Shu, A. Agrawal, Int. J. Numer. Methods Fluids 62, 403 (2010)

    Google Scholar 

  54. H.B. Luan, H. Xu, L. Chen, Y.L. He, W.Q. Tao, Int. J. Heat Mass Transfer 54, 1975 (2011)

    Article  Google Scholar 

  55. K. Han, Y.T. Feng, D. Owen, Comput. Struct. 85, 1080 (2007)

    Article  Google Scholar 

  56. Z.L. Guo, B.C. Shi, C.G. Zheng, Int. J. Numer. Methods Fluids 39, 325 (2002)

    Article  ADS  Google Scholar 

  57. G. Gonnella, A. Lamura, A. Piscitelli, A. Tiribocchi, Phys. Rev. E 82, 046302 (2010)

    Article  ADS  Google Scholar 

  58. P. Hantz, I. Biró, Phys. Rev. Lett. 96, 088305 (2006)

    Article  ADS  Google Scholar 

  59. E.M. Foard, A.J. Wagner, Phys. Rev. E 79, 056710 (2009)

    Article  ADS  Google Scholar 

  60. G. Gonnella, A. Lamura, A. Piscitelli, J. Phys. A 41, 105001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  61. A. Krekhov, Phys. Rev. E 79, 425 (2009)

    Article  Google Scholar 

  62. F.J. Alexander, S. Chen, D.W. Grunau, Phys. Rev. B 48, 634 (1993)

    Article  ADS  Google Scholar 

  63. F. Corberi, G. Gonnella, A. Lamura, Phys. Rev. E 66, 016114 (2002)

    Article  ADS  Google Scholar 

  64. Y. Gan, A. Xu, G. Zhang, Y. Li, H. Li, Phys. Rev. E 84, 4547 (2010)

    Google Scholar 

  65. M. Necatiözisik, Heat Conduction, 2nd edition (Wiley, New York, 1993)

  66. H. Liu, Y. Zhang, A.J. Valocchi, J. Comput. Phys. 231, 4433 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  67. H. Liu, A.J. Valocchi, Y. Zhang, Q. Kang, J. Comput. Phys. 256, 334 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zang, D., Li, X. et al. Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method. Eur. Phys. J. E 40, 115 (2017). https://doi.org/10.1140/epje/i2017-11605-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11605-6

Keywords

Navigation