Skip to main content
Log in

Entropy production in a fluid-solid system far from thermodynamic equilibrium

The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The terminal orientation of a rigid body in a moving fluid is an example of a dissipative system, out of thermodynamic equilibrium and therefore a perfect testing ground for the validity of the maximum entropy production principle (MaxEP). Thus far, dynamical equations alone have been employed in studying the equilibrium states in fluid-solid interactions, but these are far too complex and become analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on numerical techniques which can be computationally expensive. In our past work, we have shown that the MaxEP is a reliable tool to help predict orientational equilibrium states of highly symmetric bodies such as cylinders, spheroids and toroidal bodies. The MaxEP correctly helps choose the stable equilibrium in these cases when the system is slightly out of thermodynamic equilibrium. In the current paper, we expand our analysis to examine i) bodies with fewer symmetries than previously reported, for instance, a half-ellipse and ii) when the system is far from thermodynamic equilibrium. Using two-dimensional numerical studies at Reynolds numbers ranging between 0 and 14, we examine the validity of the MaxEP. Our analysis of flow past a half-ellipse shows that overall the MaxEP is a good predictor of the equilibrium states but, in the special case of the half-ellipse with aspect ratio much greater than unity, the MaxEP is replaced by the Min-MaxEP, at higher Reynolds numbers when inertial effects come into play. Experiments in sedimentation tanks and with hinged bodies in a flow tank confirm these calculations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Lars Onsager, Phys. Rev. 37, 405 (1931)

    Article  Google Scholar 

  2. Lars Onsager, Phys. Rev. 38, 2265 (1931)

    Article  Google Scholar 

  3. Ilya Prigogine, Introduction to Thermodynamics of Irreversible Processes, 3rd edition (Interscience, New York, 1967) p. 1

  4. Hans Ziegler, An Introduction to Thermomechanics, Vol. 21 (Elsevier, 2012)

  5. L.M. Martyushev, V.D. Seleznev, Phys. Rep. 426, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Adrian Bejan, Sylvie Lorente, Phys. Life Rev. 8, 209 (2011)

    Article  ADS  Google Scholar 

  7. L.G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980)

    Article  ADS  Google Scholar 

  8. Yaoqi Joe Liu, Daniel D. Joseph, J. Fluid Mech. 255, 565 (1993)

    Article  ADS  Google Scholar 

  9. Giovanni P. Galdi, Handb. Math. Fluid Dyn. 1, 653 (2002)

    Article  Google Scholar 

  10. Roberto Camassa, Vortex induced oscillations of cylinders at low and intermediate Reynolds numbers, in Advances in Mathematical Fluid Mechanics (Springer, Berlin Heidelberg, 2010) pp. 135--145

  11. B. Chung et al., Arch. Appl. Mech. 86, 627 (2016)

    Article  ADS  Google Scholar 

  12. R.E. Khayat, R.G. Cox, J. Fluid Mech. 209, 435 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bong Jae Chung, Ashwin Vaidya, Physica D: Nonlinear Phenom. 237, 2945 (2008)

    Article  ADS  Google Scholar 

  14. Bong Jae Chung, Kirk McDermid, Ashwin Vaidya, Eur. Phys. J. B 87, 20 (2014)

    Article  ADS  Google Scholar 

  15. Bong Jae Chung, Ashwin Vaidya, Appl. Math. Comput. 218, 3451 (2011)

    MathSciNet  Google Scholar 

  16. https://www.comsol.com/

  17. Ryan Allaire et al., Int. J. Non-Linear Mech. 69, 157 (2015)

    Article  Google Scholar 

  18. Bogdan Nita, Peter Nolan, Ashwin Vaidya, Comput. Appl. Math. 36, 1733 (2017)

    Article  MathSciNet  Google Scholar 

  19. F. Candelier, B. Mehlig, J. Fluid Mech. 802, 174 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Einarsson et al., Phys. Fluids 28, 013302 (2016)

    Article  ADS  Google Scholar 

  21. Greg A. Voth, Alfredo Soldati, Annu. Rev. Fluid Mech. 49, 249 (2017)

    Article  ADS  Google Scholar 

  22. Ichiro Aoki, Ecol. Complex. 3, 56 (2006)

    Article  Google Scholar 

  23. Ashwin Vaidya, MaxEP and Stable Configurations in Fluid-Solid Interactions, in Beyond the Second Law (Springer Berlin, Heidelberg, 2014) pp. 257--276

  24. M.M. Zdravkovich, J. Fluid Mech. 350, 377 (1997)

    Google Scholar 

  25. Alfred Hubler, Andrey Belkin, Alexey Bezryadin, Complexity 20, 8 (2015)

    Article  Google Scholar 

  26. Tehran J. Davis et al., Ecol. Psychol. 28, 23 (2016)

    Article  Google Scholar 

  27. Dilip Kondepudi, Bruce Kay, James Dixon, Phys. Rev. E 91, 050902 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin Vaidya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, B.J., Ortega, B. & Vaidya, A. Entropy production in a fluid-solid system far from thermodynamic equilibrium. Eur. Phys. J. E 40, 105 (2017). https://doi.org/10.1140/epje/i2017-11595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11595-3

Keywords

Navigation