Skip to main content
Log in

Elastic and dielectric properties of ferroelectric nanoparticles/bent-core nematic liquid crystal blend

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Bent-core liquid crystals present the first evidence of forming polar superstructures from achiral molecules. The nematic phase is the newest member of the bent-core family and turns out to be extremely interesting owing to its distinct features compared to its calamitic counterpart. Here the investigation of one achiral unsymmetrical 2-methyl-3-amino-benzoic acid (2,6-substituted toluene)-derived four-ring bent-core nematic (BCN) liquid crystals (11-2M-F) is presented after nanodispersion. Ferroelectric nanoparticles significantly affect the phase transition temperature, threshold voltage, dielectric permittivity, elastic constants and splay viscosity of the pristine BCN. In most bent-core nematic liquid crystals the bent elastic constant (K33) is usually lower than the splay elastic constant (K11) owing to the presence of short-range smectic-C-like correlations in the nematic phase. Thus the elastic anisotropy (\( K_{33}-K_{11}\)) is usually negative in bent-core nematics unlike in rod-like nematic liquid crystals where K33 is always greater than K11. Here we report a short-core bent-shaped nematic liquid crystal whose negative elastic anisotropy was turned to positive by minute addition of ferroelectric nanoparticles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Uchida, Jpn. J. Appl. Phys. 53, 03CA02 (2014)

    Article  Google Scholar 

  2. J.W. Doane, A. Golemme, J.L. West, J.B. Whitehead jr., B.-G. Wu, Mole. Cryst. Liq. Cryst. 165, 511 (1988)

    Google Scholar 

  3. D. Xu, L. Rao, C.-Da Tu, S.-T. Wu, J. Disp. Technol. 9, 67 (2013)

    Article  ADS  Google Scholar 

  4. H. Qi, T. Hegmann, J. Mater. Chem. 18, 3288 (2008)

    Article  Google Scholar 

  5. D. Sikharulidze, Appl. Phys. Lett. 86, 033507 (2005)

    Article  ADS  Google Scholar 

  6. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, J. West, Appl. Phys. Lett. 82, 1917 (2003)

    Article  ADS  Google Scholar 

  7. F. Li, O. Buchnev, C.I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T.J. Sluckin, J.L. West, Phys. Rev. Lett. 97, 147801 (2006)

    Article  ADS  Google Scholar 

  8. O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Reshetnyak, Y. Reznikov, J. Opt. Soc. Am. B 24, 1512 (2007)

    Article  ADS  Google Scholar 

  9. G. Cook, A.V. Glushchenko, V. Reshetnyak, A.T. Griffith, M.A. Saleh, D.R. Evans, Opt. Express 16, 4015 (2008)

    Article  ADS  Google Scholar 

  10. H. Qi, B. Kinkead, T. Hegmann, Adv. Funct. Mater. 18, 212 (2008)

    Article  Google Scholar 

  11. I.C. Khoo, A. Diaz, J. Liou, M.V. Stinger, J. Huang, Y. Ma, IEEE J. Sel. Top. Quantum Electron. 16, 410 (2010)

    Article  Google Scholar 

  12. J. Mirzaei, M. Urbanski, H.-S. Kitzerow, T. Hegmann, Chem. Phys. Chem. 15, 1381 (2014)

    Article  Google Scholar 

  13. M.V. Rasna, L. Cmok, D.R. Evans, A. Mertelj, S. Dhara, Liq. Cryst. 42, 1059 (2015)

    Article  Google Scholar 

  14. L. Fenghua, J. West, A. Glushchenko, C.I. Cheon, Y. Reznikov, J. Soc. Inf. Disp. 14, 523 (2006)

    Article  Google Scholar 

  15. E. Ouskova, O. Buchnev, V. Reshetnyak, Yu. Reznikov, H. Kresse, Liq. Cryst. 30, 1235 (2003)

    Article  Google Scholar 

  16. L.M. Lopatina, J.V. Selinger, Phys. Rev. Lett. 102, 197802 (2009)

    Article  ADS  Google Scholar 

  17. R. Basu, A. Garvey, Appl. Phys. Lett. 105, 151905 (2014)

    Article  ADS  Google Scholar 

  18. N. Podoliak, O. Buchnev, M. Herrington, E. Mavrona, M. Kaczmarek, A.G. Kanaras, E. Stratakis, J.-F. Blach, J.-F. Henninotd, M. Warenghemd, RSC Adv. 4, 46068 (2014)

    Article  Google Scholar 

  19. R.K. Shukla, C.M. Liebig, D.R. Evansb, W. Haase, RSC Adv. 4, 18529 (2014)

    Article  Google Scholar 

  20. R. Basu, Phys. Rev. E 89, 022508 (2014)

    Article  ADS  Google Scholar 

  21. A. Jákli, Liq. Cryst. Rev. 1, 65 (2013)

    Article  Google Scholar 

  22. H. Takezoe, Y. Takanishi, Jpn. J. Appl. Phys. 45, 597 (2006)

    Article  ADS  Google Scholar 

  23. M.B. Ros, J.L. Serrano, M.R. de la Fuenteb, C.L. Folciac, J. Mater. Chem. 15, 5093 (2005)

    Article  Google Scholar 

  24. M. Hird, Liq. Cryst. Today 14, 9 (2005)

    Article  Google Scholar 

  25. N. Begum, S. Turlapati, S. Debnath, G. Mohiuddin, D.D. Sarkar, N.V.S. Rao, Liq. Cryst. 40, 1105 (2013)

    Article  Google Scholar 

  26. S. Ghosh, N. Begum, S. Turlapati, S.K. Roy, A.K. Das, N.V.S. Rao, J. Mater. Chem. C 2, 425 (2014)

    Article  Google Scholar 

  27. J.-H. Lee, T.-K. Lim, W.-T. Kim, J.-L. Jin, J. Appl. Phys. 101, 034105 (2007)

    Article  ADS  Google Scholar 

  28. J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J.T. Gleeson, A. Jákli, Phys. Rev. Lett. 97, 157802 (2006)

    Article  ADS  Google Scholar 

  29. D. Wiant, J.T. Gleeson, N. Eber, K. Fodor-Csorba, A. Jákli, T. Tóth- Katona, Phys. Rev. E 72, 041712 (2005)

    Article  ADS  Google Scholar 

  30. D. Wiant, S. Stojadinovic, K. Neupane, S. Sharma, K. Fodor-Csorba, A. Jákli, J.T. Gleeson, S. Sprunt. Phys. Rev. E 73, 030703 (2006)

    Article  ADS  Google Scholar 

  31. C. Bailey, K. Fodor-Csorba, J.T. Gleeson, S.N. Sprunt, A. Jákli, Soft Matter 5, 3618 (2009)

    Article  ADS  Google Scholar 

  32. S. Turlapati, R.K. Khan, P.R. Ramesh, J. Shamanna, S. Ghosh, N.V.S. Rao, Liq. Cryst. 44, 784 (2017)

    Article  Google Scholar 

  33. R.K. Khan, S. Turlapati, N.V.S. Rao, S. Ghosh, J. Mol. Liq. 225, 328 (2017)

    Article  Google Scholar 

  34. H.-Y. Chen, W. Lee, Appl. Phys. Lett. 88, 222105 (2006)

    Article  ADS  Google Scholar 

  35. A. Saupe, Z. Naturforsch. A 15, 815 (1960)

    ADS  Google Scholar 

  36. H.J. Deuling, Mol. Cryst. Liq. Cryst. 19, 123 (1972)

    Article  Google Scholar 

  37. Y.A. Nastishin, R.D. Polak, S.V. Shiyanovskii, V.H. Bodnar, O.D. Lavrentovich, J. Appl. Phys. 86, 4199 (1999)

    Article  ADS  Google Scholar 

  38. T. Uchida, Y. Takahashi, Mol. Cryst. Liq. Cryst. 72, 133 (1981)

    Article  Google Scholar 

  39. P. Sathyanarayana, M. Mathew, Q. Li, V.S.S. Sastry, B. Kundu, K.V. Le, H. Takezoe, S. Dhara, Phys. Rev. E 81, 010702R (2010)

    Article  ADS  Google Scholar 

  40. H. Wang, T.X. Wu, X. Zhu, S.-T. Wu, J. Appl. Phys. 95, 5502 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmistha Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R.K., Turlapati, S., Rao, N.V.S. et al. Elastic and dielectric properties of ferroelectric nanoparticles/bent-core nematic liquid crystal blend. Eur. Phys. J. E 40, 75 (2017). https://doi.org/10.1140/epje/i2017-11564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11564-x

Keywords

Navigation