Skip to main content
Log in

Measuring thin films using quantitative frustrated total internal reflection (FTIR)

  • Tips and Tricks
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In the study of interactions between liquids and solids, an accurate measurement of the film thickness between the two media is essential to study the dynamics. As interferometry is restricted by the wavelength of the light source used, recent studies of thinner films have prompted the use of frustrated total internal reflection (FTIR). In many studies the assumption of a simple exponential decay of the intensity with film thickness was used. In the present study we highlight that this model does not satisfy the Fresnel equations and thus gives an underestimation of the films. We show that the multiple reflections and transmissions at both the upper and the lower interfaces of the film must be taken into account to accurately describe the measured intensity. In order to quantitatively validate the FTIR technique, we measured the film thickness of the air gap between a convex lens of known geometry and a flat surface and obtain excellent agreement. Furthermore, we also found that we can accurately measure the elastic deformations of the lens under loads by comparing them with the results of the Herzian theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.P. Zhao, L.S. Wang, T.X. Yu, J. Adhes. Sci. Technol. 17, 519 (2003)

    Article  ADS  Google Scholar 

  2. R. Bruinsma, A. Behrisch, E. Sackmann, Phys. Rev. E 61, 4253 (2000)

    Article  ADS  Google Scholar 

  3. J. Schilling, K. Sengupta, S. Goennenwein, A. Bausch, E. Sackmann, Phys. Rev. E 69, 021901 (2004)

    Article  ADS  Google Scholar 

  4. T. Tran, H.J.J. Staat, A. Prosperetti, C. Sun, D. Lohse, Phys. Rev. Lett. 108, 036101 (2012)

    Article  ADS  Google Scholar 

  5. W. Bouwhuis, R.C.A. van der Veen, T. Tran, D.L. Keij, K.G. Winkels, I.R. Peters, D. van der Meer, C. Sun, J.H. Snoeijer, D. Lohse, Phys. Rev. Lett. 109, 264501 (2012)

    Article  ADS  Google Scholar 

  6. T. Tran, H.D. Maleprade, C. Sun, D. Lohse, J. Fluid Mech. 726, R3 (2013)

    Article  Google Scholar 

  7. R.C.A. van der Veen, M.H.W. Hendrix, T. Tran, C. Sun, P.A. Tsai, D. Lohse, Soft Matter 10, 3703 (2014)

    Article  ADS  Google Scholar 

  8. E. Hecht, Optics, 4th ed. (Addison Wesley Longman Inc, Boston, 1998)

  9. J.M. Kolinski, S.M. Rubinstein, S. Mandre, M.P. Brenner, D.A. Weitz, L. Mahadevan, Phys. Rev. Lett. 108, 074503 (2012)

    Article  ADS  Google Scholar 

  10. J.M. Kolinski, L. Mahadevan, S.M. Rubinstein, Phys. Rev. Lett. 112, 134501 (2014)

    Article  ADS  Google Scholar 

  11. J.M. Kolinski, L. Mahadevan, S.M. Rubinstein, EPL 108, 24001 (2014)

    Article  ADS  Google Scholar 

  12. C. Khavari, C. Sun, D. Lohse, T. Tran, Soft Matter 11, 3298 (2015)

    Article  ADS  Google Scholar 

  13. M. Shirota, M.A.J. van Limbeek, C. Sun, A. Prosperetti, D. Lohse, Phys. Rev. Lett. 116, 064501 (2016)

    Article  ADS  Google Scholar 

  14. M.A.J. van Limbeek, M. Shirota, C.P. Sleutel, C. Sun, A. Prosperetti, Int. J. Heat Mass Transfer 97, 101 (2016)

    Article  Google Scholar 

  15. C. Zettner, M. Yoda, Exp. Fluids 34, 115 (2003)

    Article  Google Scholar 

  16. J. Kim, Int. J. Heat Fluid Flow 28, 753 (2007)

    Article  Google Scholar 

  17. H. Hertz, J. Reine Angew. Math. 92, 156 (1881)

    Google Scholar 

  18. K.L. Johnson, Contact Mechanics (Cambridge University Press, 1987)

  19. I.N. Court, F.K. von Willisen, Appl. Opt. 3, 719 (1964)

    Article  ADS  Google Scholar 

  20. S. Zhu, W. Yu, D. Hawley, R. Roy, Am. J. Phys. 54, 601 (1986)

    Article  ADS  Google Scholar 

  21. U.D. Schwarz, J. Colloid Interface Sci. 261, 99 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minori Shirota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirota, M., van Limbeek, M.A.J., Lohse, D. et al. Measuring thin films using quantitative frustrated total internal reflection (FTIR). Eur. Phys. J. E 40, 54 (2017). https://doi.org/10.1140/epje/i2017-11542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11542-4

Keywords

Navigation