Skip to main content
Log in

Chaperone-driven polymer translocation through nanopore: Spatial distribution and binding energy

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Chaperones are binding proteins working as a driving force in biopolymer translocation. They bind to the biopolymer near the pore and prevent its backsliding. Chaperones may have different spatial distributions. Recently, we showed the importance of their spatial distribution in translocation and its effects on the sequence dependency of the translocation time. Here we focus on homopolymers and exponential distribution. Because of the exponential distribution of chaperones, the energy dependency of the translocation time will change. Here we find a minimum in translocation time versus binding effective energy (EBE) curve. The same trend can be seen in the scaling exponent of time versus polymer length, \( \beta\) (\(T\sim\beta\)), when plotted against EBE. Interestingly in some special cases, e.g. chaperones of size \(\lambda =6\) and with an exponential distribution rate of \( \alpha =5\), the minimum even reaches to an amount of less than 1 (\(\beta <1\)). We explain the possibility of this rare result. Moreover, based on a theoretical discussion we show that, by taking into account the velocity dependency of the translocation on polymer length, one can truly predict the value of this minimum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Meller, J. Phys.: Condens. Matter 15, R581 (2003)

    ADS  Google Scholar 

  2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Publishing, New York, 2002)

  3. M. Muthukumar, Annu. Rev. Biophys. Biomol. Struct. 36, 435 (2007)

    Article  Google Scholar 

  4. T.A. Rapoport, Nature 450, 663 (2007)

    Article  ADS  Google Scholar 

  5. E.D. Marzio, J.J. Kasianowicz, J. Chem. Phys. 119, 6378 (2003)

    Article  ADS  Google Scholar 

  6. J.J. Nakane, M. Akeson, A. Marziali, J. Phys.: Condens. Matter 15, R1365 (2003)

    ADS  Google Scholar 

  7. D. Branton, D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krsticand, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, Nat. Biotechnol. 20, 1146 (2008)

    Article  Google Scholar 

  8. J.A. Cohen, A. Chaudhuri, R. Golestanian, Phys. Rev. X 2, 2160 (2012)

    Google Scholar 

  9. P. Fanzio, C. Manneschi, E. Angeli, V. Mussi, G. Firpo, L. Ceseracciu, L. Repetto, U. Valbusa, Sci. Rep. 2, 791 (2012)

    Article  ADS  Google Scholar 

  10. S. Carson, M. Wanunu, Nanotechnology 26, 074004 (2015)

    Article  ADS  Google Scholar 

  11. F. Liang, P. Zhang, Sci. Bull. 60, 296 (2015)

    Article  Google Scholar 

  12. S.M. Bezrukov, I. Vodyanoy, V.A. Parsegian, Nature 370, 279 (1994)

    Article  ADS  Google Scholar 

  13. J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)

    Article  ADS  Google Scholar 

  14. D. Panja, G.T. Barkema, A.B. Kolomeisky, J. Phys.: Condens. Matter 25, 413101 (2013)

    Google Scholar 

  15. L.-Z. Sun, M.-B. Luo, J. Phys.: Condens. Matter 26, 415101 (2014)

    Google Scholar 

  16. V.V. Palyulin, T. Ala-Nissila, R. Metzler, Soft Matter 10, 9016 (2014)

    Article  ADS  Google Scholar 

  17. D. Tomkiewicz, N. Nouwen, A.J.M. Driessen, Fed. Eur. Biochem. Soc. Lett. 581, 2820 (2007)

    Article  Google Scholar 

  18. S.F. Simon, C.S. Peskin, G.F. Oster, Proc. Natl. Acad. Sci. U.S.A. 89, 3770 (1992)

    Article  ADS  Google Scholar 

  19. W. Liebermeister, T.A. Rapoport, R. Heinrich, J. Mol. Biol. 305, 643 (2001)

    Article  Google Scholar 

  20. T.C. Elston, Biophys. J. 82, 1239 (2002)

    Article  ADS  Google Scholar 

  21. R. Zandi, D. Reguera, J. Rudnick, W.M. Gelbart, Proc. Natl. Acad. Sci. U.S.A. 100, 8649 (2003)

    Article  ADS  Google Scholar 

  22. C. Hepp, B. Maier, Proc. Natl. Acad. Sci. U.S.A. 113, 12467 (2016)

    Article  Google Scholar 

  23. T. Ambjrnsson, R. Metzler, Phys. Biol. 1, 77 (2004)

    Article  ADS  Google Scholar 

  24. R.H. Abdolvahab, F. Roshani, A. Nourmohammad, M. Sahimi, M.R.R. Tabar, J. Chem. Phys. 129, 235102 (2008)

    Article  ADS  Google Scholar 

  25. R.H. Abdolvahab, M.R. Ejtehadi, R. Metzler, Phys. Rev. E 83, 011902 (2011)

    Article  ADS  Google Scholar 

  26. R.H. Abdolvahab, M.R. Ejtehadi, R. Metzler, J. Chem. Phys. 135, 5102 (2011)

    Article  Google Scholar 

  27. W. Yu, K. Luo, J. Am. Chem. Soc. 133, 13565 (2011)

    Article  Google Scholar 

  28. W. Yu, K. Luo, Phys. Rev. E 90, 042708 (2014)

    Article  ADS  Google Scholar 

  29. Q.-B.R. Wei-Ping Cao, M.-B. Luo, Phys. Rev. E 92, 012603 (2015)

    Article  ADS  Google Scholar 

  30. P.M. Suhonen, R.P. Linna, Phys. Rev. E 93, 012406 (2016)

    Article  ADS  Google Scholar 

  31. R.H. Abdolvahab, Phys. Lett. A 380, 1023 (2016)

    Article  ADS  Google Scholar 

  32. M.-J.C.-Z. Qing-Bao, RenSong-Hua, S.-P. Cao, Colloid Polym. Sci. 294, 1351 (2016)

    Article  Google Scholar 

  33. F. Besse, A. Ephrussi, Nat. Rev. Mol. Cell Biol. 9, 971 (2008)

    Article  Google Scholar 

  34. W. Wang, E. van Niekerk, D.E. Willis, J.L. Twiss, Dev. Neurobiol. 67, 1166 (2007)

    Article  Google Scholar 

  35. L.-Z. Sun, W.-P. Cao, M.-B. Luo, Phys. Rev. E 84, 041912 (2011)

    Article  ADS  Google Scholar 

  36. M.-B. Luo, W.-P. Cao, Phys. Rev. E 86, 031914 (2012)

    Article  ADS  Google Scholar 

  37. M. Muthukumar, J. Chem. Phys. 111, 10371 (1999)

    Article  ADS  Google Scholar 

  38. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edition, Vol. 13 of Synergetics (Springer, New York, 2002)

  39. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge UK, 2001)

  40. T. Ambjrnsson, M.A. Lomholt, R. Metzler, J. Phys.: Condens. Matter 17, S3945 (2005)

    ADS  Google Scholar 

  41. K.C. Martin, A. Ephrussi, Cell 136, 719 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Haji Abdolvahab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolvahab, R.H. Chaperone-driven polymer translocation through nanopore: Spatial distribution and binding energy. Eur. Phys. J. E 40, 41 (2017). https://doi.org/10.1140/epje/i2017-11528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11528-2

Keywords

Navigation