Skip to main content
Log in

Why granular media are thermal, and quite normal, after all

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Two approaches exist to account for granular dynamics: The athermal one takes grains as elementary, the thermal one considers the total entropy that includes microscopic degrees of freedom such as phonons and electrons. Discrete element method (DEM), granular kinetic theory and athermal statistical mechanics (ASM) belong to the first, granular solid hydrodynamics (GSH) to the second one. A discussion of the conceptual differences between both is given here, leading, among others, to the following insights: 1) While DEM and granular kinetic theory are well justified to take grains as athermal, any entropic consideration is far less likely to succeed. 2) In addition to modeling grains as a gas of dissipative, rigid mass points, it is very helpful take grains as a thermal solid that has been sliced and diced. 3) General principles that appear invalid in granular media are repaired and restored once the true entropy is included. These abnormalities (such as invalidity of the fluctuation-dissipation theorem, granular temperatures failing to equilibrate, and grains at rest unable to explore the phase space) are consequences of the athermal approximation, not properties of granular media.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.A. Cundall, O.D.L. Strack, Geotechnique 29, 47 (1979)

    Article  Google Scholar 

  2. H.J. Herrmann, S. Luding, Continuum Mech. Thermodyn. 10, 189 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.N. Roux, AIP Conf. Proc. 1542, 46 (2013)

    Article  ADS  Google Scholar 

  4. P.K. Haff, J. Fluid Mech. Digital Archive 134, 401 (1983)

    Article  ADS  Google Scholar 

  5. J.T. Jenkins, S.B. Savage, J. Fluid Mech. 130, 187 (1983)

    Article  ADS  Google Scholar 

  6. S.B. Savage, Adv. Appl. Mech. 24, 289 (1984)

    Article  Google Scholar 

  7. C.S. Campbell, Annu. Rev. Fluid Mech. 22, 57 (1990)

    Article  ADS  Google Scholar 

  8. I. Goldhirsch, Chaos 9, 659 (1999)

    Article  ADS  Google Scholar 

  9. I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. S.F. Edwards, R.B.S. Oakeshott, Physica A 157, 1080 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Blumenfeld, J.F. Jordan, S.F. Edwards, Phys. Rev. Lett. 109, 238001 (2012)

    Article  ADS  Google Scholar 

  12. P. Richard, M. Nicodemi, R. Delannay, P. Ribiere, D. Bideau, Nature 4, 121 (2005)

    Article  Google Scholar 

  13. A. Baldassarri, A. Barrat, G. DAnna, V. Loreto, P. Mayor, A. Puglisi, J. Phys.: Condens. Matter 17, S2405 (2005)

    ADS  Google Scholar 

  14. Dapeng Bi, Silke Henkes, Karen E. Daniels, Bulbul Chakraborty, Annu. Review Condens. Matter Phys. 6, 63 (2015) or arXiv:1404.1854, 2014

    Article  ADS  Google Scholar 

  15. Y.M. Jiang, M. Liu, Eur. Phys. J. E 22, 255 (2007)

    Article  Google Scholar 

  16. Y.M. Jiang, M. Liu, Granular Matter 11, 139 (2009)

    Article  Google Scholar 

  17. Y.M. Jiang, M. Liu, in Mechanics of Natural Solids, edited by D. Kolymbas, G. Viggiani (Springer, 2009) pp. 27--46

  18. Y.M. Jiang, M. Liu, Acta Mech. 225, 2363 (2014)

    Article  MathSciNet  Google Scholar 

  19. G. Gudehus, Y.M. Jiang, M. Liu, Granular Matter 1304, 319 (2011)

    Article  Google Scholar 

  20. Y.M. Jiang, M. Liu, Phys. Rev. Lett. 91, 144301 (2003)

    Article  ADS  Google Scholar 

  21. Y.M. Jiang, M. Liu, Phys. Rev. Lett. 93, 148001 (2004)

    Article  ADS  Google Scholar 

  22. Y.M. Jiang, M. Liu, Phys. Rev. Lett. 99, 105501 (2007)

    Article  ADS  Google Scholar 

  23. D.O. Krimer, M. Pfitzner, K. Bruer, Y. Jiang, M. Liu, Phys. Rev. E 74, 061310 (2006)

    Article  ADS  Google Scholar 

  24. K. Bruer, M. Pfitzner, D.O. Krimer, M. Mayer, Y. Jiang, M. Liu, Phys. Rev. E 74, 061311 (2006)

    Article  ADS  Google Scholar 

  25. Y.M. Jiang, M. Liu, Phys. Rev. E 77, 021306 (2008)

    Article  ADS  Google Scholar 

  26. Y.M. Jiang, M. Liu, AIP Conf. Proc. 1145, 1096 (2009)

    Article  ADS  Google Scholar 

  27. M. Mayer, M. Liu, Phys. Rev. E 82, 042301 (2010)

    Article  ADS  Google Scholar 

  28. D. Krimer, S. Mahle, M. Liu, Phys. Rev. E 86, 061312 (2012)

    Article  ADS  Google Scholar 

  29. Y.M. Jiang, H.P. Zheng, Z. Peng, L.P. Fu, S.X. Song, Q.C. Sun, M. Mayer, M. Liu, Phys. Rev. E 85, 051304 (2012)

    Article  ADS  Google Scholar 

  30. Q. Zhang, Y.C. Li, M.Y. Hou, Y.M. Jiang, M. Liu, Phys. Rev. E 85, 031306 (2012)

    Article  ADS  Google Scholar 

  31. Y. Jiang, M. Liu, Granul. Matter 15, 237 (2013)

    Article  ADS  Google Scholar 

  32. Yimin Jiang, Mario Liu, AIP Conf. Proc. 1542, 52 (2013)

    Article  ADS  Google Scholar 

  33. Y.M. Jiang, M. Liu, Eur. Phys. J. E 38, 15 (2015)

    Article  MathSciNet  Google Scholar 

  34. D. Kolymbas, Introduction to Hypoplasticity (Balkema, Rotterdam, 2000)

  35. W. Wu, D. Kolymbas, Constitutive Modelling of Granular Materials (Springer, Berlin, 2000)

  36. D.L. Henann, K. Kamrin, Proc. Natl. Acad. Sci. U.S.A. 110, 6730 (2012)

    Article  ADS  Google Scholar 

  37. K. Kamrin, G. Koval, Phys. Rev. Lett. 108, 178301 (2012)

    Article  ADS  Google Scholar 

  38. GDR MiDi, Eur. Phys. J. E 14, 341 (2004)

    Article  Google Scholar 

  39. Yoël Forterre, Olivier Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)

    Article  ADS  Google Scholar 

  40. Y. Forterre, O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)

    Article  ADS  Google Scholar 

  41. D.P. Bi, J. Chang, B. Chakraborty, R.P. Behringer, Nature 480, 355 (2011)

    Article  ADS  Google Scholar 

  42. Somayeh Farhadi, Robert P. Behringer, Phys. Rev. Lett. 112, 148301 (2014)

    Article  ADS  Google Scholar 

  43. N. Kumar, Stefan Luding, Granular Matter 18, 58 (2016)

    Article  Google Scholar 

  44. S. Luding, Nat. Phys. 12, 531 (2016)

    Article  Google Scholar 

  45. Van Bau Nguyen, Thierry Darnige, Ary Bruand, Eric Clement, Phys. Rev. Lett. 107, 138303 (2011)

    Article  Google Scholar 

  46. I.M. Khalatnikov, Introduction to the Theory of Superfluidity (Benjamin, New York, 1965)

  47. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, 1987)

  48. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993)

  49. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  50. T. Wichtmann, A. Niemunis, T. Triantafyllidis, Int. J. Numer. Anal. Meth. Geomech. 34, 440 (2010)

    Google Scholar 

  51. I.F. Collins, G.T. Houlsby, Proc. R. Soc. London, Ser. A 453, 1975 (1997)

    Article  ADS  Google Scholar 

  52. H. Temmen, H. Pleiner, M. Liu, H.R. Brand, Phys. Rev. Lett. 84, 3228 (2000)

    Article  ADS  Google Scholar 

  53. H. Temmen, H. Pleiner, M. Liu, H.R. Brand, Phys. Rev. Lett. 86, 745 (2001)

    Article  ADS  Google Scholar 

  54. Oliver Müller, Mario Liu, Harald Pleiner, Helmut R. Brand, Phys. Rev. E 93, 023113 (2016)

    Article  ADS  Google Scholar 

  55. Oliver Müller, Mario Liu, Harald Pleiner, Helmut R. Brand, Phys. Rev. E 93, 023114 (2016)

    Article  ADS  Google Scholar 

  56. B.O. Hardin, F.E. Richart, J. Soil Mech. Found. Div. ASCE 89, SM1:33 (1963)

    Google Scholar 

  57. Stefan Luding, Nonlinearity 22, 101 (2009)

    Article  MathSciNet  Google Scholar 

  58. L. Bocquet, W. Losert, D. Schalk, T.C. Lubensky, J.P. Gollub, Phys. Rev. E 65, 011307 (2001)

    Article  ADS  Google Scholar 

  59. C. Josserand, A.V. Tkachenko, D.M. Mueth, H.M. Jaeger, Phys. Rev. Lett. 85, 3632 (2000)

    Article  ADS  Google Scholar 

  60. J.A. Dijksman, G.H. Wortel, L.T.H. van Dellen, O. Dauchot, M. van Hecke, Phys. Rev. Lett. 107, 108303 (2011)

    Article  ADS  Google Scholar 

  61. S. Luding, M. Nicolas, O. Pouliquen, in Compaction of Soils, Granulates and Powders, edited by D. Kolymbas, W. Fellin (Balkema, Rotterdam, 2000)

  62. Andrzej Niemunis, Carlos E. Grandas Tavera, Torsten Wichtmann, in Holistic Simulation of Geotechnical Installation Processes, edited by T. Triantafyllidis, Lect. Notes Appl. Computat. Mech. Vol. 80 (Springer, 2016)

  63. Jiang, Liu, Acta Geotech. 11, 519 (2016)

    Article  Google Scholar 

  64. I.S. Aranson, L.S. Tsimring, Phys. Rev. E 65, 061303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  65. I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)

    Article  ADS  Google Scholar 

  66. Wei Wu, J. Engin. Math. 56, 23 (2006)

    Article  Google Scholar 

  67. J. Tejchman, W. Wu, Granular Matter 12, 399 (2010)

    Article  Google Scholar 

  68. R.A. Bagnold, Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 225, 49 (1954)

    Article  ADS  Google Scholar 

  69. P. Wroth, A. Schofield, Critical State Soil Mechanics (McGraw-Hill, London, 1968).

  70. D.M. Wood, Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press, 1990)

  71. S. Roy, S. Luding, T. Weinhart, submitted to New J. Phys. (2016)

  72. C.S. Campbell, J. Fluid Mech. 465, 261 (2002)

    Article  ADS  Google Scholar 

  73. A. Singh, K. Saitoh, V. Magnanimo, S. Luding, New J. Phys. 17, 043028 (2015)

    Article  ADS  Google Scholar 

  74. T.S. Komatsu, S. Inagaki, N. Nakagawa, S. Nasuno, Phys. Rev. Lett. 86, 1757 (2001)

    Article  ADS  Google Scholar 

  75. J. Crassous, J.-F. Metayer, P. Richard, C. Laroche, J. Stat. Mech. 2008, P03009 (2008)

    Article  Google Scholar 

  76. D. Fenistein, J.W. van de Meent, M. van Hecke, Nature 425, 695 (2003)

    Article  Google Scholar 

  77. D. Fenistein, J.W. van de Meent, M. van Hecke, Phys. Rev. Lett. 96, 118001 (2006)

    Article  ADS  Google Scholar 

  78. D. Fenistein, J.W. van de Meent, M. van Hecke, Phys. Rev. Lett. 96, 038001 (2006)

    Article  Google Scholar 

  79. Ken Kamrin, Eran Bouchbinder, J. Mech. Phys. Solids 73, 269 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Liu, M. Why granular media are thermal, and quite normal, after all. Eur. Phys. J. E 40, 10 (2017). https://doi.org/10.1140/epje/i2017-11497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11497-4

Keywords

Navigation