Skip to main content
Log in

Stationary and transient Soret separation in a binary mixture with a consolute critical point

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The stationary and transient Soret separation in a binary mixture with a consolute critical point is studied theoretically. The mixture is placed between two parallel plates kept at different temperatures. A polymer blend is used as a model system. Analytical solutions are constructed to describe the stationary separation in a binary mixture with variable Soret coefficient. The latter strongly depends on temperature and concentration and enhances near a consolute critical point due to reduced diffusion. As a result, a large concentration gradient is observed locally, while much smaller concentration variations are found in the rest of the layer. It is shown that complete separation can be obtained by applying a small temperature difference first, waiting for the establishment of stationary state, and then increasing this difference again. In this case, the critical temperature lies between hot and cold wall temperatures, while the mixture still remains in the one-phase region. When the initial (mean) temperature or concentration are shifted away from the near-critical values, the separation decreases. The analysis of transient behavior shows that the Soret separation occurs much faster than diffusion to the homogeneous state when the initial concentration is close to the critical one. It happens due to the decrease (increase) of the local relaxation time during the Soret (Diffusion) steps. The transient times of these steps become comparable for small temperature differences or off-critical initial concentrations. An unusual (non-exponential) separation dynamics is observed when the separation starts in the off-critical domain, and then enhances greatly when the system enters into the near-critical region. It is also found that the transient time decreases with increasing the applied temperature difference.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Köhler, K. Morozov, J. Nonequilib. Thermodyn. 41, 151 (2016)

    Article  ADS  Google Scholar 

  2. J. Luettmer-Strathmann, J.V. Sengers, G.A. Olchowy, J. Chem. Phys. 103, 7482 (1995)

    Article  ADS  Google Scholar 

  3. J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006)

  4. J.V. Sengers, J.M.H. Levelt Sengers, Annu. Rev. Phys. Chem. 37, 189 (1986)

    Article  ADS  Google Scholar 

  5. J.V. Sengers, R.A. Perkins, Fluids near critical points. Experimental Thermodynamics, Volume IX: Advances in Transport Properties of Fluids (Royal Society of Chemistry, Cambridge, 2014) Chapt. 10

  6. J. Luettmer-Strathmann, Lect. Notes Phys. 584, 24 (2002)

    Article  ADS  Google Scholar 

  7. W.M. Rutherford, J.G. Roof, J. Phys. Chem. 63, 1506 (1959)

    Article  Google Scholar 

  8. L.H. Cohen, M.L. Dingus, H. Meyer, Phys. Rev. Lett. 50, 1058 (1983)

    Article  ADS  Google Scholar 

  9. L.H. Cohen, M.L. Dingus, H. Meyer, J. Low Temp. Phys. 61, 79 (1985)

    Article  ADS  Google Scholar 

  10. J. Luettmer-Strathmann, J.V. Sengers, J. Chem. Phys. 104, 3026 (1996)

    Article  ADS  Google Scholar 

  11. G. Thomaes, J. Chem. Phys. 25, 32 (1956)

    Article  ADS  Google Scholar 

  12. M.L.S. Matos Lopes, C.A. Nieto de Castro, J.V. Sengers, Int. J. Thermophys. 13, 283 (1992)

    Article  ADS  Google Scholar 

  13. M. Giglio, A. Vendramini, Phys. Rev. Lett. 34, 561 (1975)

    Article  ADS  Google Scholar 

  14. M. Giglio, A. Vendramini, Phys. Rev. Lett. 35, 168 (1975)

    Article  ADS  Google Scholar 

  15. S. Wiegand, W. Köhler, Lect. Notes Phys. 584, 189 (2002)

    Article  ADS  Google Scholar 

  16. O. Ecenarro, J.A. Madariaga, J.L. Navarro, C.M. Santamaría, J.A. Carrión, J.M. Savirón, J. Phys.: Condens. Matter 5, 2289 (1993)

    ADS  Google Scholar 

  17. W. Enge, W. Köhler, Phys. Chem. Chem. Phys. 6, 2373 (2004)

    Article  Google Scholar 

  18. A. Voit, A. Krekhov, W. Köhler, Phys. Rev. E 76, 011808 (2007)

    Article  ADS  Google Scholar 

  19. W. Köhler, A. Krekhov, W. Zimmermann, Adv. Polym. Sci. 227, 145 (2010)

    Article  Google Scholar 

  20. S.K. Das, M.E. Fisher, J.V. Sengers, J. Horbach, K. Binder, Phys. Rev. Lett. 97, 025702 (2006)

    Article  ADS  Google Scholar 

  21. J.C. Legros, Yu. Gaponenko, T. Lyubimova, V. Shevtsova, Eur. Phys. J. E 37, 89 (2014)

    Article  Google Scholar 

  22. I.I. Ryzhkov, I.V. Stepanova, Int. J. Heat Mass Transf. 86, 268 (2015)

    Article  Google Scholar 

  23. O.A. Khlybov, I.I. Ryzhkov, T.P. Lyubimova, Eur. Phys. J. E 38, 29 (2015)

    Article  Google Scholar 

  24. M.M. Bou-Ali, A. Ahadi, D. Alonso de Mezquia, Q. Galand, M. Gebhardt, O. Khlybov, W. Köhler, M. Larrañaga, J.C. Legros, T. Lyubimova, A. Mialdun, I. Ryzhkov, M.Z. Saghir, V. Shevtsova, S. Van Vaerenbergh, Eur. Phys. J. E 38, 30 (2015)

    Article  Google Scholar 

  25. V. Shevtsova, C. Santos, V. Sechenyh, J.C. Legros, A. Mialdun, Micrograv. Sci. Technol. 25, 275 (2014)

    Article  Google Scholar 

  26. S. Enders, A. Stammer, B.A. Wolf, Macromol. Chem. Phys. 197, 2961 (1996)

    Article  Google Scholar 

  27. J.E. Mark (Editor), Polymer Data Handbook (Oxford University Press, New York, 1999)

  28. D. Van Krevelen. Properties of Polymers, 4th edition (Elsevier, 2009)

  29. A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (CRC Press, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya I. Ryzhkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkov, I.I., Kozlova, S.V. Stationary and transient Soret separation in a binary mixture with a consolute critical point. Eur. Phys. J. E 39, 130 (2016). https://doi.org/10.1140/epje/i2016-16130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16130-6

Keywords

Navigation