Skip to main content
Log in

Effects of nanopore size on the flow-induced star polymer translocation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the effects of the nanopore size on the flow-induced capture of the star polymer by a nanopore and the afterward translocation, using a hybrid simulation method that couples point particles into a fluctuating lattice-Boltzmann fluid. Our simulation demonstrates that the optimal forward arm number decreases slowly with the increase of the length of the nanopore. Compared to the minor effect of the length of the nanopore, the optimal forward arm number obviously increases with the increase of the width of the nanopore, which can clarify the current controversial issue for the optimal forward arm number between the theory and experiments. In addition, our results indicate that the critical velocity flux of the star polymer is independent of the nanopore size. Our work bridges the experimental results and the theoretical understanding, which can provide comprehensive insights for the characterization and the purification of the star polymers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. de Gennes, Adv. Polym. Sci. 38, 91 (1999)

    Article  Google Scholar 

  2. D.M. Meunier, P.B. Smith, S.A. Baker, Macromolecules 38, 5313 (2005)

    Article  ADS  Google Scholar 

  3. F. Jin, C. Wu, Phys. Rev. Lett. 96, 237801 (2006)

    Article  ADS  Google Scholar 

  4. H. Ge, F. Jin, J. Li, C. Wu, Macromolecules 42, 4400 (2009)

    Article  Google Scholar 

  5. H. Ge, C. Wu, Macromolecules 43, 8711 (2010)

    Article  ADS  Google Scholar 

  6. H. Ge, S. Pispas, C. Wu, Polym. Chem. 2, 1071 (2011)

    Article  Google Scholar 

  7. L. Li, C. He, W. He, C. Wu, Macromolecules 45, 7583 (2012)

    Article  ADS  Google Scholar 

  8. L. Beguin, B. Grassl, F. Brochard-Wyart, M. Rakib, H. Duval, Soft Matter 7, 96 (2010)

    Article  ADS  Google Scholar 

  9. A. Markesteijn, O. Usta, I. Ali, A. Balazs, J. Yeomans, Soft Matter 5, 4575 (2009)

    Article  ADS  Google Scholar 

  10. T. Auger, J. Mathé, V. Viasnoff, G. Charron, J.-M. Di Meglio, L. Auvray, F. Montel, Phys. Rev. Lett. 113, 028302 (2014)

    Article  ADS  Google Scholar 

  11. M. Ding, X. Duan, Y. Lu, T. Shi, Macromolecules 48, 6002 (2015)

    Article  ADS  Google Scholar 

  12. M. Ding, X. Duan, T. Shi, Soft Matter 12, 2851 (2016)

    Article  ADS  Google Scholar 

  13. M. Ding, Q. Chen, X. Duan, T. Shi, J. Chem. Phys. 144, 174903 (2016)

    Article  ADS  Google Scholar 

  14. G.W. Slater, C. Holm, M.V. Chubynsky, H.W. de Haan, A. Dube, K. Grass, O.A. Hickey, C. Kingsburry, D. Sean, T.N. Shendruk, L. Zhan et al., Electrophoresis 30, 792 (2009)

    Article  Google Scholar 

  15. S. Matysiak, A. Montesi, M. Pasquali, A. Kolomeisky, C. Clementi, Phys. Rev. Lett. 96, 118103 (2006)

    Article  ADS  Google Scholar 

  16. S. Guillouzic, G. Slater, Phys. Lett. A 359, 261 (2006)

    Article  ADS  Google Scholar 

  17. C. Forrey, M. Muthukumar, J. Chem. Phys. 127, 015102 (2007)

    Article  ADS  Google Scholar 

  18. K. Luo, T. Ala-Nissila, S. Ying, A. Bhattacharya, Phys. Rev. Lett. 99, 148102 (2007)

    Article  ADS  Google Scholar 

  19. K. Luo, T. Ala-Nissila, S. Ying, A. Bhattacharya, Phys. Rev. Lett. 100, 58101 (2008)

    Article  ADS  Google Scholar 

  20. M. Gauthier, G. Slater, Phys. Rev. E 79, 021802 (2009)

    Article  ADS  Google Scholar 

  21. J. Guo, X. Li, Y. Liu, H. Liang, J. Chem. Phys. 134, 134906 (2011)

    Article  ADS  Google Scholar 

  22. R. Ledesma-Aguilar, T. Sakaue, J.M. Yeomans, Soft Matter 8, 1884 (2012)

    Article  ADS  Google Scholar 

  23. P. Ahlrichs, B. Dunweg, J. Chem. Phys. 111, 8225 (1999)

    Article  ADS  Google Scholar 

  24. T.T. Pham, U.D. Schiller, J.R. Prakash, B. Dunweg, J. Chem. Phys. 131, 164114 (2009)

    Article  ADS  Google Scholar 

  25. U.D. Schiller, Comput. Phys. Commun. 185, 2586 (2014)

    Article  Google Scholar 

  26. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)

    Article  ADS  Google Scholar 

  27. G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986)

    Article  ADS  Google Scholar 

  28. A. Ladd, J. Fluid Mech. 271, 285 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  30. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

    Article  ADS  Google Scholar 

  31. Y. Qian, D. D'Humieres, P. Lallemand, Europhys. Lett. 17, 479 (1992)

    Article  ADS  Google Scholar 

  32. K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhang, L., Ding, M. et al. Effects of nanopore size on the flow-induced star polymer translocation. Eur. Phys. J. E 39, 109 (2016). https://doi.org/10.1140/epje/i2016-16109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16109-3

Keywords

Navigation