
DOI 10.1140/epje/i2016-16105-7

Regular Article

Eur. Phys. J. E (2016) 39: 105 THE EUROPEAN
PHYSICAL JOURNAL E

Macroscopic behavior of polar nematic gels and elastomers

Helmut R. Brand1,2,a, Harald Pleiner2,b, and Daniel Svenšek3
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Abstract. We present the derivation of the macroscopic equations for uniaxial polar nematic gels and elas-
tomers. We include the strain field as well as relative rotations as independent dynamic macroscopic de-
grees of freedom. As a consequence, special emphasis is laid on possible static and dynamic cross-couplings
between these macroscopic degrees of freedom associated with the network, and the other macroscopic
degrees of freedom including reorientations of the macroscopic polarization. In particular, we find static
and dissipative dynamic cross-couplings between strain fields and relative rotations on one hand and the
macroscopic polarization on the other that allow for new possibilities to manipulate polar nematics. To give
one example each for the effects of a static and a dissipative cross-coupling: we find that a static electric
field applied perpendicularly to the polar preferred direction leads to relative rotations while dynamically
relative rotations can lead to transverse electric currents. In addition to a permanent network, we also
consider the effect of a transient network, which is particularly important for the case of gels, melts and
concentrated polymer solutions. A section on the influence of macroscopic chirality is included as well.

1 Introduction

An open key issue in the field of complex fluids is the
question to what extent fluidity is compatible with static
macroscopic polar order in three dimensions. About three
decades ago there were some early experimental efforts
along these lines for nematic [1] and pyramidic [2] low
molecular weight liquid crystals. These early experimental
investigations triggered a theoretical study of Ginzburg-
Landau type for polar nematics, where it was shown that
spontaneous splay phases should play an important role
in such systems [3]. More recently liquid crystalline phases
formed by bent-core molecules were predicted [4] and
shown experimentally [5, 6] to have polar directions for
smectic liquid crystalline phases. After that liquid crys-
talline phases formed by bent-core molecules were stud-
ied theoretically and experimentally from various aspects
(compare, for example, refs. [7–9]), but reports of ne-
matic phases formed by bent-core molecules remained
scarce [10–14]. In parallel it was pointed out on the basis
of a symmetry analysis that for biaxial nematic phases,
which are fluid in three dimensions, there are several pos-
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sibilities to have biaxial nematic phases with polar or-
der [15]. From an experimental point of view there was
progress in this direction in the field of main chain liq-
uid crystalline polymers such as polypeptides, polyesters,
and Vectra for which Watanabe’s group showed [16–18]
that one can have nematic phases with polar order in-
cluding biaxial polar nematic phases with C1h symme-
try.

Clearly a macroscopic dynamic description of polar ne-
matics will play an important role in elucidating, char-
acterizing and suggesting new experiments for this class
of materials. We use the term macroscopic dynamics to
describe the low frequency long wavelength behavior of
a type of material. In addition to the classical hydro-
dynamic variables, namely the conserved quantities and
the variables connected to spontaneously broken contin-
uous symmetries [19–21], one also incorporates so-called
macroscopic variables [21], which relax on a finite, but
sufficiently long time scale to become important for the
macroscopic behavior of a given system. This concept has
been introduced by Khalatnikov for the superfluid order
parameter near the normal-fluid–superfluid λ-transition in
4He [22] and has since been applied to many different sys-
tems including the superfluid phases of 3He [23, 24] and
phase transitions in liquid crystals [25,26].



Page 2 of 13 Eur. Phys. J. E (2016) 39: 105

In the framework of macroscopic dynamics low molec-
ular weight polar nematic liquid crystals were studied for
the case without external electric fields in [27]. On the
other hand, (ordinary) nematic gels and elastomers are
well investigated [28]. Here we study polar nematic gels
and elastomers. In these systems the preferred direction is
polar, in contrast to ordinary nematic ones where a direc-
tor exists. In addition, we include isotropic gels and elas-
tomers that do not provide preferred directions by their
own. Since the polar direction is the only preferred di-
rection, the system is uniaxial. The polar and elastic as-
pects of the system can be realized by two different sub-
systems, e.g. by a polymeric elastomer swollen by a polar
low molecular weight nematic, or by a single system, e.g.
a cross-linked polymer with polar side-chain order. The
static and dynamic interactions between the two aspects
of such a system are a main topic of the present study.

In addition to the usual conserved quantities we have
as macroscopic variables the variations of the polar pre-
ferred direction, associated with the spontaneously broken
rotational symmetry, and the degree of polar orientational
order. The network brings along as additional macroscopic
variables the strain tensor as well as relative rotations be-
tween the polar order and the network. This is in fact
the first occasion that relative rotations, a concept pio-
neered by de Gennes [29] for nematic liquid crystalline
elastomers, is taken into account for systems with static
polar order. The polar preferred direction, which changes
sign under the parity operation, is an important ingre-
dient for the generation of cross-coupling terms. We also
analyze the influence of external electric fields. The in-
fluence of a transient network, an important concept for
polymeric and elastomeric systems [30,31], is investigated
as well. We will show that transient elasticity, a macro-
scopic approach, which incorporates transient networks
systematically into hydrodynamics [32–40], will lead to
additional coupling terms to lowest order in the wave vec-
tor. In addition we study the influence of chirality on the
macroscopic behavior of polar cholesterics as well as po-
lar cholesteric gels and elastomers. This appears to be the
first class of condensed matter systems described macro-
scopically for which one has two quantities breaking par-
ity symmetry, namely a polar preferred direction as well
as a pseudoscalar quantity q0 associated with macroscopic
chirality.

We concentrate on bulk hydrodynamics and will not
systematically discuss boundary conditions. In the ab-
sence of external fields boundary conditions for the ori-
entation of the polarization are important to suppress a
possible polar splay phase. They also are crucial when dis-
cussing defects and textures. This is an interesting topic
for complex systems as the present one, but is beyond the
scope of this manuscript, where a homogeneous ground
state is considered.

The present paper is organized as follows. In sect. 2
we describe the choice of the macroscopic variables, the
statics and the thermodynamics. In sect. 3 we derive
the resulting dynamic macroscopic equations for the case
of a permanent network. In sect. 4 we investigate some

simple solutions of the macroscopic equations presented.
In sect. 5 we analyze how a transient network changes
the macroscopic behavior and in sect. 6 the influence of
macroscopic chirality is discussed. Finally we present in
sect. 7 a brief summary and conclusions. In appendix A
we give a Ginzburg-Landau-type analysis of the isotropic-
ferroelectric phase transition in polar nematic gels and
elastomers thus generalizing earlier work done for low
molecular weight liquid crystals [3]. This also defines the
ground state whose hydrodynamics we are describing.

2 Derivation of macroscopic equations

2.1 Hydrodynamic and macroscopic variables

To derive macroscopic equations for polar nematic gels
and elastomers we generalize suitably the macroscopic dy-
namics of polar nematics derived in ref. [27]. According to
the Eulerian description all variables are local fields, i.e.
volume densities that depend on space and time.

In a next step we must clarify, which type of polar
nematic gels and elastomers we want to study in the fol-
lowing. In ref. [15] we have shown that —depending on
the number of polar and non-polar directions— there can
be, on the basis of symmetry considerations, a fairly large
number of biaxial nematic phases. Here we focus on the
simplest possibility of a polar nematic gel: we assume that
there is one preferred direction associated with polar or-
der. Thus one has overall uniaxial symmetry. We charac-
terize the polar order with the macroscopic polarization
P , which can be decomposed into the unit vector p̂ and
the modulus P = |P |. Thus, the relevant variables [21]
come in three classes.

The first class of variables, the conserved quantities,
contains those already known from a simple fluid, the mass
density ρ, the energy density ε and the momentum density
g. In our case we add another variable, the concentration
of the polar particles (c). In lyotropic systems one could
also take into account additionally the concentration of
the solvent cS without changing the major results, since
it has the same transformation behavior as c and thus
makes the same type of coupling terms.

In the second class we have the variables that are re-
lated to spontaneously broken continuous symmetries. In
our case we have the orientation of the macroscopic po-
larization, p̂, which is associated with spontaneously bro-
ken rotational symmetry. The variations of p̂, δp̂i, with
p̂i · δp̂i = 0 in first order, are truly hydrodynamic. p̂ is a
polar vector and thus odd under parity and even under
time reversal; the former property leads to a number of
static and dynamic cross-coupling terms unknown from
conventional uniaxial nematics. The modulus or magni-
tude of the macroscopic polarization, P , belongs to the
third class of variables, which relax on a long, but finite
time scale. The main difference to ordinary nematics lies
in the fact that p̂i is a true vector (no general p̂i → −p̂i

invariance, but p̂i → −p̂i under spatial inversion) and in
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the modulus variable P , which is strongly susceptible to
electric fields, in contrast to the nematic order parameter
modulus. It should be noted that even in ordinary ne-
matics the modulus (S) has been treated as an additional
degree of freedom [41,42], although it is only weakly sus-
ceptible to external fields and its fluctuations often have
a rather short relaxation time. Due to the strong coupling
of P to electric fields, it is clearly very important to keep
this variable in polar nematics.

The presence of a network gives rise to the strain tensor
uij as a macroscopic variable; in its linearized version it
reads uij = 1

2 (∇iuj +∇jui) with the displacement field ui.
Due to the simultaneous presence of a network as well as
of the variables δp̂i, relative rotations Ω̃i as pioneered by
de Gennes [29] for nematic elastomers become an impor-
tant macroscopic variable, which can be introduced via
Ω̃i = δp̂i − Ω⊥

i in analogy to the case of nematic liq-
uid crystalline elastomers [28], where now Ω⊥

i = p̂jΩij

with Ωij = 1
2 (∇iuj − ∇iui) and p̂iΩ

⊥
i = 0. This vari-

able describes the fact that in the presence of (vector or)
tensor fields, rotations of p̂i do not cost energy, only if
also those fields are rotated the same way, and cost en-
ergy otherwise. Relative rotations are not truly hydrody-
namic variables, but relax slowly enough to be considered
here.

Throughout this paper we stick to the splitting of P
into its modulus and its orientation, because this reveals
the different hydrodynamic nature of the latter variables
and facilitates comparison with ordinary nematics. We
stress that no additional (static and/or dynamic) mate-
rial parameters or effects are introduced by this procedure
and we have checked that using P as a variable leads to a
completely equivalent macroscopic dynamics (for an anal-
ogous discussion for ordinary nematics compare ref. [38]).
On the contrary, however, in a Ginzburg-Landau-type de-
scription of the phase transition from the isotropic (no P )
phase to a polar nematic gel or elastomer (finite P ) the
vector P must be used as a variable. This is described and
discussed in detail in appendix A.

In the next section we first give the standard thermo-
dynamic relations among the various degrees of freedom
ensuring a description compatible with basic thermody-
namic principles. The static part of the hydrodynamics is
then presented in form of a total energy expression de-
scribing how deviations from the thermodynamic ground
state enhance the energy. Subsequently, new symbols are
defined, the forms of the material tensors involved are
given thereby defining the static susceptibilities, and fi-
nally the physical meaning and implications of various
energy contributions are sketched.

2.2 Statics and thermodynamics

To derive the static properties of our system we formulate
the local first law of thermodynamics relating changes in
the entropy density σ to changes in the hydrodynamic and
macroscopic variables discussed above. We find the Gibbs

relation [43]

dε = Tdσ + μdρ + μcdc + vidgi + EidDi

+h′
idp̂i + h′P dP + Φijd∇j p̂i + ΦP

i d∇iP

+ψijduij + L⊥
i dΩ̃i, (1)

where we have kept inhomogeneous variations of the po-
larization magnitude, ∇iP , which become relevant for de-
fects as well as for inhomogeneous external fields. Similar
to the case of an ordinary nematic director, homogeneous
variations of the preferred direction p̂ do not cost energy
due to the spontaneous nature of the broken rotational
symmetry, except in the presence of an external (sym-
metry breaking) field; thus, in the field-free, homogeneous
case h′

i = 0. In addition, h′
ip̂i = 0, since p̂i is a unit vector.

In eq. (1) the thermodynamic quantities, temperature
T , chemical potential μ, relative chemical potential μc,
electric field Ei, velocity vi, the elastic stress ψij , the “rela-
tive molecular field” L⊥

i associated with relative rotations,
the molecular fields associated with the polarization h′P ,
ΦP

i , h′
i, and Φij are defined as partial derivatives of the en-

ergy density with respect to the appropriate variables [21].
If we neglect surface effects and integrate eq. (1) by parts
we can obtain a simplified expression for the Gibbs rela-
tion

dε = Tdσ + μdρ + μcdc + vidgi + EidDi

+WdP + hp
i dp̂i + ψijduij + L⊥

i dΩ̃i, (2)

where the molecular fields hP and hp
i are given by W =

h′P −∇jΦ
P
j and hp

i = h′
i −∇jΦij , respectively.

In the equilibrium state considered here, the polar-
ization magnitude, P0, is constant and a given material
parameter. The orientation of the polarization, p̂0

i is ho-
mogeneous and arbitrary. Thus, we assume that external
fields or boundary conditions suppress a splay structure
as ground state, possible for polar systems, which anyhow
cannot exist defect-free in the whole space. In an external
electric field E, the equilibrium polarization P0 is along E
and P0 is in addition also a function of the field strength,
P0 = P0(E), a function which we will not specify further
and which we assume to be known and which we will still
call P0. Due to electrostriction a finite polarization leads to
deformations of the network, which we incorporate already
in the ground state (cf. the discussion of eq. (11)). For an
extended discussion of the ground state cf. appendix A.

Taking this equilibrium state as the stable ground
state, the energy density expanded in all variables about
this state has to be convex. In addition, this energy den-
sity must be invariant under time reversal as well as under
parity and it must be invariant under rigid rotations, rigid
translations and covariant under Galilei transformations.
Taking into account these symmetry arguments we get,
for deviations of the variables from the ground state in
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harmonic approximation

ε = ε0 +
1
2
P0E (δp̂i)2 +

α

2
(δP )2 +

1
2
Lij(∇iP )(∇jP )

+
1
2
Kijkl(∇ip̂j)(∇kp̂l) + Mijk(∇iP )(∇j p̂k)

+(γ1δρ + γ2δσ + γ3δc)P0 δP

+(β1δρ + β2δσ + β3δc) p̂i∇iP

+(β̄1δρ + β̄2δσ + β̄3δc)∇ip̂i

+
1
2
cijkluijukl+

1
2
D1Ω̃iΩ̃i+

1
2
D2(δ⊥ikp̂j + δ⊥ij p̂k)Ω̃iujk

+(χρ
ijδρ + χσ

ijδσ + χc
ijδc + χP

ijP0δP + χp
ijkδp̂k)uij

+ ζijkluij∇kp̂l + ζP
ijkuij∇kP + ζE

ijkuijEk

+ ζΩE
ij Ω̃iEj + ζΩp

ijkΩ̃i∇j p̂k + ζΩP
ij Ω̃i∇jP

+ ζflexo
ijk Ek∇ip̂j , (3)

where ε0 contains all the contributions characteristic of
a miscible binary fluid mixture [21] and where δ denotes
deviations from the equilibrium value, in particular δP =
P − P0, δp̂i = p̂i − p̂0

i , δc = c − c0 etc. The polarization
electric coupling, −P ·E, translates into the hydrodynamic
electric orientation energy using Ei = Ep̂0

i and p̂0
i δp̂i =

− 1
2 (δp̂i)2 due to the requirement (p̂0

i + δp̂i)2 = 1, and is
therefore proportional to P0 and E.

Due to the existence of the preferred direction p̂i, all
material tensors reflect this uniaxiality, in particular

Kijkl =
1
2
K1

(
δ⊥ijδ

⊥
kl + δ⊥il δ

⊥
jk

)
+ K2 p̂rεrij p̂qεqkl

+K3 p̂kp̂iδ
⊥
lj , (4)

Lij = K4 p̂ip̂j + K5 δ⊥ij , (5)

Mijk = K6

(
p̂iδ

⊥
jk + p̂jδ

⊥
ik

)
, (6)

where εijk is the totally antisymmetric symbol and δ⊥ij the
transverse Kronecker delta, δ⊥ij = δij − p̂ip̂j . The material
tensor ζijkl takes the form

ζijkl = ζ1δ
⊥
ijδ

⊥
kl + ζ2δ

⊥
klp̂ip̂j + ζ3(δ⊥ikδ⊥jl + δ⊥il δ

⊥
jk)

+ ζ4(δ⊥il p̂j p̂k + δ⊥jl p̂ip̂k), (7)

having only four coefficients due to the transversality of
δp̂i. The standard uniaxial elasticity tensor, cijkl, has the
same four terms plus a fifth one (c5 pipjpkpl) [28]. For the
piezoelectric tensor, ζE

ijk, we get

ζE
ijk = ζE

1 (δ⊥ikp̂j + δ⊥jkp̂i) + ζE
2 δ⊥ij p̂k + ζE

3 p̂ip̂j p̂k (8)

with the same structure for ζP
ijk. The direct static coupling

between electric fields and relative rotations is given by

ζΩE
ij = ζΩEδ⊥ij , (9)

where ζΩP
ij has the same structure. The second-rank sus-

ceptibility tensors χρ,σ,c,P
ij are of the standard uniaxial

form, eq. (5), while χp
ijk has the same structure as eq. (6).

For the coupling between relative rotations and gradients
of the polar preferred direction, which again does not exist
in systems with a director-type preferred direction, there
is

ζΩp
ijk = ζΩpδ⊥ikp̂j . (10)

We note that the contribution ∼ ζijkl coupling strains and
gradients of a polar preferred direction only exists in po-
lar systems, while in systems with a non-polar preferred
direction, such as in ordinary nematics, it cannot arise for
parity reasons. Also the direct coupling of relative rota-
tions to electric fields ∼ ζΩE only exists in polar gels and
not in the usual nematic elastomers. The flexoelectric term
∼ ζflexo

ijk is of the same structure as in ordinary nematics
with the director n̂i replaced by p̂i.

The convexity of the energy requires various positiv-
ity conditions on tensor coefficients describing quadratic
expressions, e.g. α > 0, K1...5 > 0, D1 > 0, while
those coefficients that describe bilinear cross-couplings
can have either sign, but are bounded from above, e.g.
K2

6 < K1K4, ζ2
1 < c1K1, (ζP

3 )2 < c5K4, (ζΩP )2 < D1K5,
(χP

‖ P0)2 < αc5, and (ζΩp)2 < D1K3.
Equation (3) contains the energy density of a normal

fluid binary mixture (ε0) and the polar analogues of that of
a usual nematic phase including spatial modulations of the
order parameter modulus: the Frank orientational elastic
energy (∼ Kijkl with splay, bend and twist [44]), the en-
ergy associated with gradients of the modulus (∼ Lij) [21]
and a cross-coupling term between gradients of the pre-
ferred direction to gradients of the order parameter mod-
ulus (∼ Mijk) [45]. The orientation energy due to an
external field is governed by P0 · E and the stiffness of
order parameter variations is given by α. Although the
energy density expression is given in harmonic approxi-
mation only, it can give rise to nonlinear effects, since all
material parameters are still functions of the state vari-
ables, like temperature, pressure, and the polarization P0.
This is in contrast to ordinary nematics, where the mate-
rial parameters can only be a function of E2.

The third to fifth line of eq. (3) contains contributions
that are specific for polar nematics and are absent for
ordinary, non-polar nematics as they would violate the
n̂ → −n̂ invariance. These comprise couplings (∼ γi)
between the polarization and variations of ρ, σ and c,
which are of the same nature as the pyroelectric term in
solids [46]. They arise from appropriate terms ∼ P 2 in the
Ginzburg-Landau free energy, eq. (A.1), explaining the ex-
plicit P0 factors. Other cross-coupling terms, ∼ β̄1,2,3 and
∼ β1,2,3, are relating variations of ρ, σ and c to splay and
to spatial variations of the polarization along the preferred
direction, p̂i∇iP , respectively.



Eur. Phys. J. E (2016) 39: 105 Page 5 of 13

For the ground state considered here, the possible lin-
ear splay contribution, ∇iPi to the energy is simply a sur-
face term, which we omit. For the importance of this term
in finding the ground state, cf. appendix A.

Line six contains linear elasticity, the characteristic
self-coupling of relative rotations and the coupling of
strains to relative rotations. In line seven we have static
cross-coupling terms between strains and variations of
density, entropy density, concentration and the magni-
tude of the polarization. These terms listed in lines six
and seven are analogues and isomorphic to the case of ne-
matic gels, when the director n̂i is replaced by the polar
preferred direction p̂i. Line eight contains three coupling
terms of strains to gradients of the polar direction and
gradients of P as well as to external electric fields: these
two cross-couplings only exist for gels with a polar pre-
ferred direction. For completeness we have also listed in
line eight the analogue of the flexoelectric contribution in
a nematic for a system with a polar preferred direction.
In line nine we have three coupling terms of relative ro-
tations to external electric fields and to gradients of the
polar preferred direction and of P . All three terms only
exist for polar gels with relative rotations and have not
been considered before.

Ferroelectric solids are known to show electrostriction,
a coupling between the polarization and elastic deforma-
tions, which can be written (in close analogy to eq. (A.2)
for the magnetic case studied in ref. [28])

εP =
1
2
γP

ijklPiPjukl, (11)

where γP
ijkl has six independent coefficients [46, 47] in a

uniaxial material. For the given ground state, this expres-
sion contains a term, which is linear in the deviations,
∼ P 2

0 p̂ip̂ju
es
ij that leads to an elastic, electrostrictive de-

formation ues
ij . We assume that in our ground state the

electrostrictive deformation has already been taken into
account and the strain tensor uij describes deviations from
this true ground state. Then, the linear contribution of
eq. (11) vanishes. The contribution quadratic in deviations
from the ground state, ∼ P0(p̂iδPj+p̂jδPi)uij , leads to the
contribution χP

ijP0uijδP in the energy, eq. (3), explain-
ing also the explicit P0 factor. We will discard the other
quadratic term ∼ (p̂iδp̂j + p̂jδp̂i)uij , leading to χp

ijkuijδp̂k

in eq. (3), since we neglect orientation of the polarization
due to elastic deformations (cf. appendix A) compared to
orientation due to the external field.

The thermodynamic forces and thus simultaneously
the static properties of polar nematic gels and elastomers
are obtained by expanding first the generalized energy
density into the macroscopic variables and then, in a sec-
ond step, by taking the variational derivatives with respect
to one variable while keeping all other variables fixed, de-
noted by ellipses in the following [21]. We get in detail in
harmonic approximation

vi =
∂ε

∂gi

∣
∣
∣
∣
...

=
1
ρ
gi, (12)

h′P =
∂ε

∂δP

∣
∣
∣
∣
...

= αδP + (γ1δρ + γ2δσ + γ3δc)P0

+χP
ijP0uij , (13)

ΦP
i =

∂ε

∂(∇iP )

∣
∣
∣
∣
...

= Lij∇jP + Mijk∇j p̂k

+ p̂i(β1δρ + β2δσ + β3δc)

+ ζΩP
ij Ω̃j + ζP

kjiujk, (14)

h′
i =

∂ε

∂δp̂i

∣
∣
∣
∣
...

= P0E δp̂i, (15)

Φij =
∂ε

∂(∇j p̂i)

∣
∣
∣
∣
...

= Kjikl∇kp̂l + Mkji∇kP

+ ζkljiukl + ζflexo
jik Ek + ζΩp

kjiΩ̃k

+ δ⊥ij(β̄1δρ + β̄2δσ + β̄3δc), (16)

δμ =
∂ε

∂δρ

∣
∣
∣
∣
...

= γ1P0δP + β1p̂i∇iP + β̄1∇ip̂i

+χρ
ijuij , (17)

δT =
∂ε

∂δσ

∣
∣
∣
∣
...

= γ2P0δP + β2p̂i∇iP + β̄2∇ip̂i

+χσ
ijuij , (18)

δμc =
∂ε

∂δc

∣
∣
∣
∣
...

= γ3P0δP + β3p̂i∇iP + β̄3∇ip̂i

+χc
ijuij , (19)

ψij =
∂ε

∂uij

∣
∣
∣
∣
...

= cijklukl + χρ
ijδρ + χσ

ijδσ + χP
ijP0δP

+χc
ijδc +

1
2
D2(δ⊥ikp̂j + δ⊥jkp̂i)Ω̃k

+ ζijkl∇kp̂l + ζE
ijkEk + ζP

ijk∇kP, (20)

L⊥
i =

∂ε

∂Ω̃i

∣
∣
∣
∣
...

= D1Ω̃i +
1
2
D2(p̂jδ

⊥
ik + p̂kδ⊥ij)ujk

+ ζΩE
ij Ej + ζΩp

ijk∇j p̂k + ζΩP
ij ∇jP, (21)

from which the total molecular fields W = h′P − ∇jΦ
P
j

and hp
i = h′

i −∇jΦij follow immediately.

3 Dynamics

3.1 Dynamic equations

The macroscopic equations for conserved quantities, vari-
ables associated with spontaneously broken continuous
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symmetries and slowly relaxing variables are

∂

∂t
ρ + div ρv = 0, (22)

(
∂

∂t
+ vi∇i

)
ρel + div jel = 0, (23)

∂

∂t
σ + div σv + div jσ =

2R

T
, (24)

∂

∂t
gi + ∇j

(
vjgi + δijΠ − ψij + σth

ij + σij

)
= 0, (25)

(
∂

∂t
+ vj∇j

)
p̂i + (p̂ × ω)i + Xi = 0, (26)

ρ

(
∂

∂t
+ vj∇j

)
c + div jc = 0, (27)

(
∂

∂t
+ vj∇j

)
P + XP = 0, (28)

(
∂

∂t
+ vj∇j

)
Ω̃i + Y Ω

i = 0, (29)
(

∂

∂t
+ vj∇j

)
uij − Aij + Xu

ij = 0, (30)

with gi = ρvi and [28,35]

σth
ij = −EjDi + Φkj∇ipk + 2ψjkuki

−1
2
(p̂jh

p
i − p̂ih

p
j ) −

1
2
(Ω̃jL

⊥
i − Ω̃iL

⊥
j ), (31)

where Aij = 1
2 (∇ivj + ∇jvi) is the deformational flow

and ωi = 1
2εijk∇jvk the vorticity. The thermodynamic

pressure is defined as Π ≡ −(∂/∂V )
∫

εdV and given by

Π = −ε + Tσ + μρ + μcc + g · v + E · D. (32)

It only contains the extensive degrees of freedom. Note
that the thermodynamic pressure is not equal to (one third
of) the trace of the total stress tensor, due to the elastic
stress ψij , eq. (20), and the nonlinearities in eq. (31). The
parts of the currents shown explicitly in (22)-(31) are not
material dependent, but are given by general symmetry
and thermodynamic principles [21], like transformation
behavior under translations (transport terms) or rotations
(convective terms) and by the requirement of zero entropy
production (R = 0) of all those terms together with the
isotropic pressure term in eq. (25).

Using the requirement [21]

ωij(−PiEj + hp
i p̂j + Φki∇j p̂k

+∇k(p̂jΦik) + L⊥
i Ω̃j + 2ψkiukj) = 0 (33)

for any constant antisymmetric matrix ωij = −ωji, which
ensures the rotational invariance of the Gibbs relation,
eq. (1), the non-symmetric part of the stress tensor,
eq. (31), can be transformed as

2σth
ij = −(EjDi + EiDj) + Φki∇j p̂k + Φkj∇ip̂k

+2(ψjkuki + ψikukj) + ∇k(p̂jΦik − p̂iΦjk). (34)

Now σth
ij is either symmetric or a divergence of an anti-

symmetric part, which ensures angular momentum con-
servation. It can be brought into a manifestly symmetric
form by some redefinitions [19].

The source term 2R/T in (24) is the entropy produc-
tion, which has to be zero for reversible, and positive for
irreversible processes. The phenomenological parts of the
entropy current jσ

i , the stress tensor σij , the concentra-
tion current jc

i and the quasi-currents Xi, Y Ω
i , XP , and

Xu
ij , associated with the temporal changes of the polar

unit vector, relative rotations, the polar nematic order,
and the strain tensor, respectively, are given below. These
phenomenological currents and quasi-currents can be split
into reversible (superscript R) and dissipative parts (su-
perscript D), where the former have the same time re-
versal behavior as the time derivative of the appropriate
variable and must give R = 0, while the latter have the
opposite behavior and give R > 0. The phenomenolog-
ical currents and quasi-currents are given within “linear
irreversible thermodynamics” (guaranteeing general On-
sager relations), i.e. as linear relations between currents
and thermodynamic forces. The resulting expressions are
nevertheless nonlinear, since all material parameters can
be functions of the state variables (e.g. Π, T , P ). The
phenomenological part of the stress tensor σij has to be
symmetric guaranteeing angular momentum conservation.
The dynamic equation for the energy density follows from
eqs. (22)-(30) via eq. (1), and is not shown here.

3.2 Reversible dynamics

Making use of symmetry arguments (including behavior
under time reversal, parity, rigid rotations, rigid trans-
lations and covariance under Galilei transformations) and
Onsager’s relations we obtain the following expressions for
the reversible currents up to linear order in the thermo-
dynamic forces

gi = ρvi, (35)

jσR
i = ϕσ

ijkAjk, (36)

jcR
i = ϕc

ijkAjk, (37)

jelR
i = ϕel

ijkAjk, (38)

XuR
ij = 0, (39)

σR
ij = −1

2
λp

kjih
p
k + βijW − 1

2
λ⊥(L⊥

i p̂j + L⊥
j p̂i)

−ϕσ
kji∇kT − ϕc

kji∇kμc − ϕel
kjiEk, (40)

XPR = βijAij , (41)

Y R
i = −1

2
λp

ijkAjk, (42)

Y ΩR
i = −1

2
λ⊥(δ⊥ij p̂k + δ⊥ikp̂j)Ajk, (43)

with Ajk = 1
2 (∇ivk +∇kvi). The coupling of the polariza-

tion and the density of linear momentum is provided by
the tensors
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λijk = λ(p̂jδ
⊥
ik+p̂kδ⊥ij) and λP

ij = λP
2 δ⊥ij+λP

3 p̂ip̂j . (44)

One finds a total of three material-dependent coupling
terms. The first is the analogue of the classical flow align-
ment term coupling the orientation of the preferred di-
rection to deformational flow, while the coupling to rota-
tional flow (rigid rotation) is not material dependent and
has already been made explicit in eq. (26). The two contri-
butions ∼ λP

2 and ∼ λP
3 are associated with the coupling

of the magnitude of the polarization, P , to velocity gra-
dients (compare also the detailed discussion in the next
section). We note that this coupling between the density
of linear momentum and the polarization is identical in
structure to that of a uniaxial nematic, when formally p̂i

is replaced by the director n̂i and P by the nematic order
parameter modulus S. The coupling of relative rotations
to flow, provided by the λ⊥ terms, has already been given
in nematic elastomers [28].

The tensors ϕα
ijk have been shown before to arise for

polar nematics [48] and are of the structure

ϕα
ijk = ϕα

1 p̂ip̂j p̂k + ϕα
2 p̂iδ

⊥
jk + ϕα

3 (p̂jδ
⊥
ik + p̂kδ⊥ij). (45)

These reversible dynamic cross-coupling terms exist in all
macroscopic systems with a parity breaking vector.

The physical meaning of some of these reversible cou-
plings will be explored in sect. 4.

3.3 Irreversible dynamics and entropy production

For the derivation of the dissipative parts of the phe-
nomenological currents one usually expands the dissipa-
tion function R to second order in the thermodynamic
forces and then obtains the dissipative currents by taking
the variational derivatives with respect to the forces. We
find for the dissipation function

R =
1
2
κij (∇iT ) (∇jT ) +

1
2
νijklAijAkl +

1
2
κW W 2

+
1
2
γij (∇kψik) (∇lψjl) + DT

ij (∇jT ) (∇iμc)

+λWT
ij (∇jW ) (∇iT ) + λWμ

ij (∇jW ) (∇iμc)

+ (∇jψij)
(
ξT
ik∇kT + ξc

ik∇kμc + ξW
ik ∇kW + ξE

ikEk

)

+
1
2
Dij (∇iμc) (∇jμc) +

1
2
sijEiEj + DE

ijEi∇jμc

+DW
ij Ei∇jW + κE

ijEi∇jT + ξE
ijEi∇kψjk

+κEW
‖ p̂iEiW + κP

‖ p̂iW∇iT

+DψW
‖ p̂iW∇jψij + DP

‖ p̂iW∇iμc

+hp
kδ⊥jk(ξpψ∇iψij + ξpT∇jT + ξpEEj

+ ξpμ∇jμ + ξpW∇jW )

+L⊥
k δ⊥jk(ξΩψ∇iψij + ξΩT∇jT + ξΩEEj

+ ξΩμ∇jμ + ξΩW∇jW )

+ δ⊥ij

(
1

2γ1
hp

i h
p
j +

1
2
ξ⊥L⊥

i L⊥
j + ξ12L

⊥
i hp

j

)
. (46)

Here νijkl is the uniaxial viscosity tensor [19], κW de-
scribes the relaxation of the polar order parameter, κij ,
γij , Dij , DT

ij , sij and κE
ij describe heat conduction, strain

diffusion, mass diffusion, thermodiffusion, electric con-
ductivity and the Peltier effect, respectively. λWT

ij , λWμ
ij ,

ξT
ij , ξc

ij , ξW
ij , DE

ij and DW
ij , describe diffusive coupling

terms between gradients of the polar order parameter
and defect diffusion on one hand, and gradients of tem-
perature and chemical potential or electric fields on the
other. All second-rank dissipative property tensors dis-
cussed so far are of the uniaxial form bD

ij = bD
⊥δ⊥ij +

bD
‖ p̂ip̂j . γ1 is associated with the diffusion or relaxation

of the polar direction, ξ⊥ characterizes the relaxation
of relative rotations and the contribution ∼ ξ12 repre-
sents the coupling between relative rotations and dif-
fusion/relaxation of the polar direction. The last three
contributions are isomorphic in structure to the case of
nematic elastomers with the director n̂i replaced by p̂i

[28]. The contributions ∼ κEW
‖ , κP

‖ , DψW
‖ and DP

‖ cou-
ple variations of relaxing polar order parameter to elec-
tric field, temperature gradients, gradients of the chem-
ical potential and strain diffusion. The terms containing
κP
‖ and DP

‖ have been given before for polar nematic in
ref. [27].

The positivity requirement for the dissipation func-
tion requires various positivity conditions on tensor co-
efficients describing quadratic expressions, e.g. κ⊥,‖, γ⊥,‖,
s⊥,‖, and κW are all positive, while those coefficients that
describe bilinear cross-couplings can have either sign, but
are bounded from above, e.g. (κEW

‖ )2 < s‖κW , (κP
‖ )2 <

κ‖κW , and (DψW
‖ )2 < γ‖κW .

All terms in eq. (46) ∼ ξΩxL⊥
k coupling relative rota-

tions to temperature gradients, electric fields, gradients of
chemical potential and polar order parameter as well as
to strain diffusion are given here for the first time. They
are characteristic for systems with polar order and relative
rotations. The contributions ∼ ξpαhp

k represent cross cou-
plings between the molecular field of the polar direction
(hp

k) and temperature gradients, electric fields, gradients
of chemical potential and polar order parameter as well
as strain diffusion. Two of these contributions (∼ ∇T and
∇μ) have been presented for polar nematic [27]. All terms
associated with ξpx are characteristic for systems with a
polar direction and do not arise for non-polar liquid crys-
tals.

Inspecting carefully eq. (46) one notes that, except for
the dissipation associated with the extensional flow, Aij ,
all macroscopic variables couple to each other dissipatively
to a low order in the wave vector.

The range of possible values of the coefficients in
eq. (46) is restricted by the positivity of the entropy pro-
duction.

To obtain the dissipative parts of the currents and
quasi-currents we take the partial derivatives of R with
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respect to the appropriate thermodynamic force

jσD
i = −κij∇jT − DT

ij∇jμc − κE
ijEj

−λWT
ij ∇jW − ξT

ij∇kψjk

− ξpT δ⊥ijh
p
j − ξΩT δ⊥ijL

⊥
j − κp

‖p̂iW, (47)

jcD
i = −Dij∇jμc − DT

ij∇jT − DE
ijEj

−λWμ
ij ∇jW − ξc

ij∇kψjk

− ξpμδ⊥ijh
p
j − ξΩμδ⊥ijL

⊥
j − Dp

‖ p̂iW, (48)

jelD
i = σijEj + DE

ij∇jμc + κE
ij∇jT

+DW
ij ∇jW + ξE

ij∇kψjk

+ ξpEδ⊥ijh
p
j + ξΩEδ⊥ijL

⊥
j + κEW

‖ p̂iW, (49)

σD
ij = −νD

ijklAkl, (50)

Y D
i =

1
γ1

δ⊥ijh
p
j + ξ12L

⊥
i

+ ξpψδ⊥ij∇kψkj + ξpT δ⊥ij∇jT + ξpEδ⊥ijEj

+ ξpμδ⊥ij∇jμ + ξpW δ⊥ij∇jW, (51)

Y ΩD
i = ξ⊥L⊥

i + ξ12h
n
i

+ ξΩψδ⊥ij(∇kψkj) + ξΩT δ⊥ij(∇jT ) + ξΩEδ⊥ijEj

+ ξΩμδ⊥ij(∇jμ) + ξΩW δ⊥ij(∇jW ), (52)

ZD = κW W −∇j(λWT
ij ∇iT + λWμ

ij ∇iμc)

−∇k(ξW
ik ∇jψij) −∇j(DWT

ij Ei)

+κEW
‖ p̂iEi + κP

‖ p̂i∇iT

+DψW
‖ p̂i∇jψij + DP

‖ p̂i∇iμc

−∇j(ξpW δ⊥jkhp
k) −∇j(ξΩW δ⊥jkL⊥

k ), (53)

XuD
ij = −1

2
[∇j(ξT

ik∇kT + ξc
ik∇kμc + ξW

ik ∇kW

+ ξE
ikEk + γik∇lψkl + DψW

‖ p̂iW

+ ξpψδ⊥ikhp
k + ξΩψδ⊥ikL⊥

k ) + (i ↔ j)]. (54)

4 Experimental considerations

As a first important observation we notice that there is
only one macroscopic variable, which is odd under time
reversal, namely the density of momentum gi or, equiv-
alently, the velocity vi. In addition, there is no intrinsic
unit vector in the system, which is odd under time re-
versal and which would facilitate reversible cross-coupling
terms. Examples for such systems include ferromagnets
and antiferromagnets [20], the superfluid phases 3He-A
and 3He-A1 [24, 49] and uniaxial magnetic gels [50].

4.1 Reversible cross-coupling terms

First we discuss briefly the question of reversible cross-
coupling terms. It turns out that all reversible cross-
coupling arising and listed in eqs. (36)-(38) and (40)-(43)
have been presented before for nematic gels [28] or for low
molecular weight polar nematic liquid crystals [27,48]. We
refer to these references for a more detailed analysis.

4.2 Physical consequences of selected static
cross-coupling terms

Inspecting the various static cross-coupling terms in
eq. (3), we find that there are four types which are charac-
teristic for gels with polar preferred directions and which
do not exist in nematic gels or low molecular weight polar
nematics. One of them, namely piezoelectricity, the static
coupling between the strain tensor and electric fields, is
of the same structure as the piezoelectric tensor in solid
state physics. It thus has for a uniaxial polar system of
the nature discussed here three independent piezoelectric
coefficients [46].

There is one novel static coupling to strains, namely
the coupling between spatial variations of the polar pre-
ferred direction and strains. The corresponding terms take
the form

Φij = . . . − ζkljiuij , (55)

ψij = . . . + ζijkl∇kp̂l, (56)

where ζijkl has four independent coefficients (compare
eq. (7)).

Relative rotations are associated with two static cross-
coupling terms not considered before. They can couple to
external electric fields as well as to spatial variations of
the polar preferred direction. Specifically we obtain

L⊥
i = . . . + ζΩE

ij Ej + ζΩp
ijk∇j p̂k, (57)

Φij = . . . + ζΩp
kjiΩ̃k, (58)

where
ζΩE
ij = ζΩEδ⊥ij , (59)

and
ζΩp
ijk = ζΩpδ⊥ikp̂j . (60)

To get a better intuition for the experimental conse-
quences of these cross-coupling terms we consider a con-
crete geometry. We take the equilibrium value of the polar
preferred direction to be parallel to the ẑ-axis. Then we
have

L⊥
x = . . . + ζΩEEx + ζΩp∇z p̂x, (61)

L⊥
y = . . . + ζΩEEy + ζΩp∇z p̂y, (62)

Φxz = . . . + ζΩpΩ̃x, (63)

Φyz = . . . + ζΩpΩ̃y. (64)
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From eqs. (61) to (64) we arrive at the following three
conclusions for the novel static behavior for polar gels.
An electric field applied perpendicularly to the polar pre-
ferred direction leads to relative rotations. Relative rota-
tions lead to bend deformations of the polar direction and,
conversely, bend deformations of the director lead to rel-
ative rotations. None of these effects is possible for the
usual nematic gels.

4.3 Physical consequences of selected dissipative
cross-coupling terms

For the dissipative cross-coupling terms between relative
rotations and the molecular field associated with the polar
direction on one hand and gradients of temperature, rela-
tive chemical potential, elastic stress and order parameter
field and electric fields we have as the relevant subset of
eqs. (47) to (49) and (51) to (54)

jelD
i = −ξpE

ij hp
j − ξΩE

ij L⊥
j , (65)

jσD
i = −ξpT

ij hp
j − ξΩT

ij L⊥
j , (66)

jcD
i = −ξpμ

ij hp
j − ξΩμ

ij L⊥
j , (67)

Y D
i = +ξpψ

ij ∇kψkj + ξpT
ij ∇jT + ξpE

ij Ej

+ ξpμ
ij ∇jμ + ξpW

ij ∇jW, (68)

Y ΩD
i = +ξΩψ

ij ∇kψkj + ξΩT
ij ∇jT + ξΩE

ij Ej

+ξΩμ
ij ∇jμ + ξΩW

ij ∇jW, (69)

ZD = −∇j(ξ
pW
jk hp

k) −∇j(ξΩW
jk L⊥

k ), (70)

XuD
ij =

1
2
[(ξpψ

ik hp
k + ξΩψ

ik L⊥
k ) + (i ↔ j)]. (71)

Inspecting eqs. (65) to (71) we see that, for example,
heat currents and electric currents arise due to relative ro-
tations and, perhaps easier to check experimentally, tem-
perature gradients and electric fields lead to relative ro-
tations. Similarly deformations of the polar direction lead
to heat, concentration and electric currents.

To arrive at a simple picture for the experimental con-
sequences of these dissipative cross-coupling terms we con-
sider a simple geometry. We again take the equilibrium
value of the polar preferred direction to be parallel to the
ẑ-axis. Then we have

jelD
x = −ξpEhp

x − ξΩEL⊥
x , (72)

jelD
y = −ξpEhp

y − ξΩEL⊥
y . (73)

That is, relative rotations and the molecular field associ-
ated with the polar direction give rise to tranverse electric
currents. In addition

Y D
x = +ξpEEx, (74)

Y D
y = +ξpEEy, (75)

Y ΩD
x = +ξΩT∇xT + ξΩEEx, (76)

Y ΩD
y = +ξΩT∇yT + ξΩEEy. (77)

Thus, electric fields and temperature gradients perpendic-
ular to the polar direction give rise to relative rotations
and finite values of the molecular field.

We close this section by emphasizing that all these
effects can only arise for polar gels.

5 Influence of a transient network on the
macroscopic dynamics

In this brief section we outline the changes for the macro-
scopic behavior of polar nematic gels and elastomers for
the case that a transient network —in addition to a per-
manent network— is present.

As usual for the case of transient networks the static
considerations are unchanged. The dynamic equation for
the strain tensor, eq. (30), can now have a source term,
since the network relaxes. To leading order in the wave
vector the reversible dynamics in the presence of a tran-
sient network does not change.

For the dissipation function, however, there are several
additions, which are of lower order in k than for the case
of gels and elastomers

R = . . . +
1
2
(τ−1)ijklψijψkl

+ψij(τT
ijk∇kT + τ c

ijk∇kμc + τW
ijk∇kW + τE

ijkEk)

+ψij(τ
pψ
ijkhp

k + τΩψ
ijk L⊥

k ). (78)

In eq. (78) the tensor associated with the relaxation
times of the transient network, (τ−1)ijkl has the same
structure as the tensor of the elastic moduli, cijkl. The
third-rank tensors in the second line of eq. (78) take the
form

τ ξψ
ijk = τ ξψ

1 (p̂iδ
⊥
jk + p̂jδ

⊥
ik) + τ ξψ

2 p̂ip̂j p̂k, (79)

while the third-rank tensors in the third line of eq. (78)
take the form

τ ξ
ijk = τ ξ(p̂iδ

⊥
jk + p̂jδ

⊥
ik). (80)

Taking the derivatives of the dissipation function
eq. (78) we obtain for the contributions from the tran-
sient network to the dissipative parts of the currents and
quasi-currents

jσD
k = −τT

ijkψij , (81)

jcD
k = −τ c

ijkψij , (82)

jelD
k = τE

ijkψij , (83)

Y D
k = τpψ

ijkψij , (84)

Y ΩD
k = τΩψ

ijk ψij , (85)

XPD = −∇k(τW
ijkψij), (86)

XuD
ij = (τ−1)ijklψkl

+ τT
ijk∇kT + τ c

ijk∇kμc + τW
ijk∇kW + τE

ijkEk

+ τpψ
ijkhp

k + τΩψ
ijk L⊥

k . (87)
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We point out that none of the cross-coupling terms enter-
ing eqs. (81)-(87) are possible for non-polar transient ne-
matic gels and elastomers. Specifically these contributions
predict that in a polar system the mechanical stresses aris-
ing from a transient network give rise to heat and electric
currents.

6 Macroscopic dynamics of chiral polar gels

In this section we discuss chiral contributions, which arise
when, in addition to the polar preferred direction, a pseu-
doscalar quantity, q0, is present in polar nematic networks.
In any system with orientational order order chirality al-
lows for a linear twist energy that can lead to a helical
structure of the preferred direction (compare, for exam-
ple, for systems with a director: [51]). In addition, the
twist couples to all scalar variables (static Lehmann ef-
fects) [52–55] and to strains and relative rotations

εch = q0L2 p̂ · (∇ × p̂) + q0K7 (∇ · p̂)[p̂ · (∇ × p̂)]

− q0(τcδc + τσδσ + τρδρ + τP δP ) p̂ · (∇ × p̂)

− q0τ
u
ij p̂ · (∇ × p̂)uij − q0τΩεikmp̂j p̂mΩ̃i∇j p̂k.

(88)

The pitch of the helix generally is ∼ q0 and becomes ex-
actly q0, if the coefficient of the linear twist term, L2, is
identical to the quadratic twist elastic coefficient K2 [56].
The contribution ∼ K7 is unique to systems, which possess
both, a polar preferred direction as well as a pseudoscalar
quantity q0. It couples splay and twist and was given with-
out any further discussion first in the classical paper by
Frank [57] and denoted there by K12. The contribution
∼ τP is associated with variations of the modulus of the
order parameter and arises for all helical systems.

The contributions in the last line of eq. (88) are spe-
cific for chiral elastic systems and have been given first
very recently for ferrocholesteric liquid crystals and for
ferrocholesteric networks [58], which are characterized by
a director ni. The first one represents a coupling of twist
to the strain tensor uij , where τu

ij takes the form

τu
ij = τu

1 p̂ip̂j + τu
2 δ⊥ij . (89)

Thus this term gives rise to changes in the pitch due to uni-
axial mechanical stresses such as compression and dilata-
tion. Such an effect has been studied for cholesteric side-
chain elastomers in detail experimentally [59,60]. The sec-
ond one (∼ τΩ) relates static director deformations with
relative rotations.

Other static effects specific for general chiral elastic
systems are related to electric fields

εDch = q0ζ
Ω p̂jεijkDiΩ̃k + q0ζ

ψ
ijkDiujk (90)

and describe electric field-induced relative rotations
(rotato-electricity [61,62]) and deformations with

ζψ
ijk = ζψ(εijrp̂rp̂k + εikrp̂rp̂j). (91)

Next we give the additional chiral contributions to the
thermodynamic conjugate quantities that arise from the
chiral energy ε = εch + εDch, eqs. (88)-(91), by taking
the variational derivative with respect to the appropriate
variables

δT = −q0τσp̂ · (∇ × p̂), (92)

δμ = −q0τρp̂ · (∇ × p̂), (93)

δμc = −q0τcp̂ · (∇ × p̂), (94)

W = −q0τP p̂ · (∇ × p̂), (95)

ψij = −q0τ
u
ij p̂ · (∇ × p̂) + q0ζ

ψ
kijDk, (96)

L⊥
i = +q0εjki(ζΩDj + τΩ p̂j p̂r∇r) p̂k, (97)

Ei = q0ζ
Ω p̂jεijkΩ̃k + q0ζ

ψ
ijkujk, (98)

hp
i = q0L2(∇ × p̂)jδ

⊥
ij + q0τΩ p̂j p̂rεkir∇jΩ̃k

+ q0p̂kεkji(τc∇jc + τσ∇jσ + τρ∇jρ + τP∇jP )

+ q0τ
u
klp̂rεrji∇jukl + K7h

p
i . (99)

Now we turn to a discussion of the dynamic chiral con-
tributions. Using the condition R = 0 and the general
symmetry arguments outlined above, we obtain the fol-
lowing expressions for the chiral parts of the reversible
currents up to linear order in the thermodynamic forces

jσR
i = q0χ

σ
ijkAjk, (100)

jcR
i = q0χ

c
ijkAjk, (101)

XuR
ij = 0, (102)

jelR
i = q0χ

e
ijkAjk, (103)

σR
ij = −q0(χc

kij∇kμc + χe
kijEk + χσ

kij∇kT ), (104)

XR = 0, (105)

Y R
i = 0, (106)

Y ΩR
i = 0, (107)

where we have disregarded gradients of the thermody-
namic forces.

The material tensors χξ
ijk describe purely chiral effects

and contain one phenomenological parameter each (where
ξ ∈ σ, c, e)

χξ
ijk = χξ(εikmp̂j p̂m + εijmp̂kp̂m), (108)

totaling three purely chiral reversible transport parame-
ters.

The contributions associated with χξ
ijk couple re-

versibly extensional flows to heat, concentration and elec-
tric currents. All these contributions are absent in ordi-
nary nematics and nematic gels and elastomers due to
the lack of broken parity symmetry in the latter classes
of materials. But we emphasize that they also exist in
cholesteric low molecular weight materials as well as in
cholesteric gels and elastomers.
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The dissipative part of the dynamics for polar nematic
gels and elastomers, associated with the presence of the
pseudoscalar q0, can be discussed most succinctly in terms
of the dissipation function. For the dissipation function of
chiral polar nematic gels we get in addition to eq. (46)

RL = q0 εijkp̂jh
p
k(ψc∇iμc + ψσ∇iT + ψeEi)

+ q0εijkp̂jL
⊥
k (ψΩ

c ∇iμc + ψΩ
σ ∇iT + ψΩ

e Ei)

+ q0ψjk(χcψ
ijk∇iμc + χσψ

ijk∇iT + χeψ
ijkEi). (109)

It contains all the dissipative Lehmann-type effects re-
lating gradients of temperature and concentration, and
electric fields to director rotations (first line) and rela-
tive rotations (second line). In contrast to the static case,
where there is no coupling to an electric field [52], such a
contribution arises naturally in the dissipation function.
On the other hand, there is no such dissipative coupling
to density gradients, since there is no dissipative current
associated with density (due to mass conservation). The
third line describes appropriate dissipative couplings to
elastic deformations, not considered before for polar sys-
tems. The material tensors χξψ

ijk with ξ ∈ {σ, c, e} contain
one dissipative transport parameter each and are of the
form of eq. (108).

We stress that these dissipative contributions occur for
all gels and elastomers with macroscopic chirality includ-
ing cholesteric and chiral smectic gels and elastomers.

The chiral parts of the dissipative currents then read

jσD
i = −q0(εijkp̂k[ψσhp

j + ψΩ
σ L⊥

j ] + χσψ
ijkψjk), (110)

jcD
i = −q0(εijkp̂k[ψch

p
j + ψΩ

c L⊥
j ] + χcψ

ijkψjk), (111)

jelD
i = −q0(εijkp̂k[ψeh

p
j + ψΩ

e L⊥
j ] + χeψ

ijkψjk), (112)

σD
ij = 0, (113)

Y D
i = q0εkjip̂j(ψc∇kμc + ψσ∇kT + ψeEk), (114)

Y ΩD
i = q0εkjip̂j(ψΩ

c ∇kμc + ψΩ
σ ∇kT + ψΩ

e Ek), (115)

XuD
ij = q0(χ

cψ
kji∇kμc + χσψ

kji∇kT + χeψ
kjiEK), (116)

totaling 9 purely chiral dissipative transport parameters.
As in the reversible case we have refrained from dis-

cussing effects involving gradients of the thermodynamic
forces. However, if we take into account, e.g. ∇iW , then
XD acquires chiral contributions ∼ ∇ih

p
k, ∼ ∇jL

⊥
k , or

∼ ∇jψjk leading to counter terms of the form ∼ ∇kW .

7 Summary and conclusions

In this paper we have presented the macroscopic dynamic
equations for polar nematic gels and elastomers. We find
that in comparison to nematic gels and to low molecu-
lar weight polar nematic liquid crystals a number of new
cross-coupling terms arise, which might lead to applica-
tions. These are due, in particular, to static and dissipa-
tive dynamic coupling effects. Statically strain fields and

relative rotations couple to electric fields and spatial vari-
ations of the polar preferred direction. Dissipatively heat
currents, concentration currents and electric currents cou-
ple to relative rotations as well as to the molecular field
of the polar preferred direction.

Partial support of this work by H.R.B. and H.P. through the
Schwerpunktsprogramm SPP 1681 “Feldgesteuerte Partikel-
Matrix-Wechselwirkungen: Erzeugung, skalenübergreifende
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alien” of the Deutsche Forschungsgemeinschaft is gratefully
acknowledged. D.S. acknowledges the support of the Slovenian
Research Agency, Grants Nos. PI-0099, N1-0019, and J1-7435.

Appendix A. Ginzburg-Landau description of
the phase transition isotropic-ferroelectric in
polar nematic gels

For the Ginzburg-Landau energy associated with the
isotropic-ferroelectric transition in gels and elastomers we
find the free energy

εGL =
1
2
a1P

2 +
1
4
a2(P 2)

2
+

1
6
a3(P 2)

3 − E · P

+(ψρ
1δρ + ψσ

1 δσ + ψc
1δc + ψt

1uii)P 2

+
1
2
ψu

1 udev
ij PiPj + (d1 + d2P

2)∇iPi

+(ψρ
2δρ + ψσ

2 δσ + ψc
2δc + ψt

2ukk)∇iPi

+
1
2
ψu

2 udev
ij (∇iPj + ∇jPi)

+ b1(∇iPi)(∇jPj) + b2(∇iPj)(∇iPj), (A.1)

where Pi denotes the full polarization vector, which is as-
sumed to vanish in the isotropic gel, and where δρ, δσ and
δc are variations of density, entropy density and concentra-
tion and uij is the strain tensor, with udev

ij = uij − 1
3δijukk

its deviator. The external field E enters the free energy in
the standard electrostatic way.

The first two terms describe a second order ferroelec-
tric transition (a2 > 0) that takes place when a1 changes
sign, which is therefore, for thermotropic systems, written
as a1 = α1(T − Tc); for barotropic or lyotropic systems T
is replaced by p or c, accordingly. For T < Tc the equilib-
rium polarization is P 2

eq = |a1|/a2, while the orientation
of Pi is arbitrary. In case a2 < 0 a (positive) term cubic
in P 2 has to be added and the transition becomes weakly
first order. In eq. (A.1) we have therefore kept a sixth
order term ∼ a3, since many paraelectric - ferroelectric
transitions in solids are known to be weakly first order.

The external field induces a finite polarization for all
temperatures which is oriented along the field direction.
For T > Tc the polarization is small and increases consid-
erably when reaching T < Tc. There is, however, no longer
a phase transition in an external field, when the underly-
ing phase transition is second order without an external
field.
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The second line contains contributions that effectively
add to a1 thereby shifting the critical temperature Tc,
when an external pressure, temperature, or concentration
change is applied. This already applies to low molecu-
lar weight systems, while the ψt

1 contributions describes a
change in Tc when the elastomer is compressed or swelled.

The contribution ψu
1 udev

ij PiPj describes the (volume-
preserving part of) electrostriction. It does not only influ-
ence the value of the equilibrium polarization P0, but also
its orientation. Assuming, e.g., an external 2-dimensional
deformation, uxy = uyx = S, the energetic minimum
without an electric field is obtained for a polarization
in the shear plane with Px = ∓Py (for ψu

1 S ≷ 0) and
P 2

x = P 2
y = P 2

eq+|ψu
1 S|/a2. For a 3-dimensional elongation

(or axial elongation), uxx = uyy = −(1/2)uzz = L, the
polarization is either (for ψu

1 L > 0) along the z-direction
with P 2

z = P 2
eq + 2ψu

1 L/a2 or (for ψu
1 L < 0) arbitrarily in

the x/y plane with P 2
x + P 2

y = P 2
eq + |ψu

1 L|/a2.
We note that the influence of a coupling of the

form Uudev
ij Qij has been investigated above the isotropic-

uniaxial nematic phase transition, which is always weakly
first order, in liquid crystalline elastomers and gels. While
de Gennes studied the influence of a uniaxial external
compression of dilatation [63], the influence of an external
symmetric shear stress has been considered in ref. [64].

If in addition to an external elastic deformation also an
electric field is applied, whose orientation does not acci-
dentally coincide with the preferred polarization direction
set by the deformation, there is a competition. Generally
the resulting orientation of the polarization will be differ-
ent from that of the field, rendering the system biaxial. In
the hydrodynamics presented in the main body of this pa-
per we neglect the orienting effects of elastic deformations
and assume a uniaxial system with the preferred direction
Pi, parallel to an electric field, if present.

A peculiar feature of any isotropic to polar transi-
tion is the existence of a linear splay term, d1∇iPi, in
the Ginzburg-Landau energy. Linear gradient terms in the
energy generally allow for inhomogeneous textures as the
thermodynamic ground state. A well-known example is
the linear twist term in the Frank energy for chiral nematic
liquid crystals that leads to the helical director structure.
Other examples occur in liquid crystal systems with addi-
tional tetrahedral order, where such linear gradient terms
are responsible for possible ambidextrous helicity and am-
bidextrous chirality [65,66], splay-bend textures [67], and
co-rotating helices [68,69].

The case of linear splay in polar transitions, however,
is different and more complicated. Although a constant
splay, ∇iPi = const, definitely lowers the gradient part
of εGL, it necessarily requires a space-dependent, reduced
polarization P that spoils the homogeneous part of εGL. It
is also impossible for constant splay to have a defect-free
texture of p̂i. In addition, with splay (internal and exter-
nal) surfaces acquire charges that interact via Coulomb
interaction, further reducing the stability of splay phases.
For a thorough discussion of the possibility and stability
of polar phases with splay textures in two and three di-
mensions we refer to [3]. As a result, splay phases can only

exist close to Tc or for large systems. In the main part of
this manuscript, we derive the hydrodynamics for the case
of a homogeneous ground state without splay.

The ψξ
2 contributions in line four of εGL add to the

magnitude of the linear splay term, d1, when an exter-
nal pressure, temperature, or concentration change is ap-
plied, or the elastomer is compressed or swelled. The non-
linear d2 contribution describes the polarization depen-
dence of the magnitude of the linear splay term within
the power expansion of a Ginzburg-Landau treatment.
The consequences of the contribution ∼ d2 have been in-
vestigated near the paraelectric-ferroelectric phase tran-
sition in solids and it was shown that this term is be-
coming important in the connection with incommensurate
phases [70]. We note that there is also a nonlinear gradi-
ent term of the form ∼ Pi∇i(PjPj), which differs from the
contribution ∼ d2 in eq. (A.1) only by a surface term.

For the ferroelectric transition in gels or elastomers,
there is an additional, qualitatively different, linear gra-
dient term, ψu

2 udev
ij (∇iPj + ∇jPi), if there is an external

(traceless) elastic deformation. Since it is a linear gradient
term, it promotes, like the linear splay term, inhomoge-
neous textures of the polarization. However, the possibili-
ties are not restricted to splay textures, but depend on the
topology of the inducing elastic deformations. In particu-
lar, 2-dimensional symmetric shear patterns or planar and
3-dimensional elongations lead to appropriate structures
of the polarization. Of course, all these patterns have the
drawback, that necessarily they cannot be defect-free and
P is not constant. Such induced structures can favorably
interfere with the possible spontaneous splay structure,
thus reducing the stability of the homogeneous state. They
also can compete with the splay structure, allowing for
phase transitions between a splay phase and another (in-
duced) inhomogeneous pattern depending on the strength
of the driving elastic deformation.
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