Skip to main content
Log in

On the morphological stability of multicellular tumour spheroids growing in porous media

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Multicellular tumour spheroids (MCTSs) are extensively used as in vitro system models for investigating the avascular growth phase of solid tumours. In this work, we propose a continuous growth model of heterogeneous MCTSs within a porous material, taking into account a diffusing nutrient from the surrounding material directing both the proliferation rate and the mobility of tumour cells. At the time scale of interest, the MCTS behaves as an incompressible viscous fluid expanding inside a porous medium. The cell motion and proliferation rate are modelled using a non-convective chemotactic mass flux, driving the cell expansion in the direction of the external nutrients’ source. At the early stages, the growth dynamics is derived by solving the quasi-stationary problem, obtaining an initial exponential growth followed by an almost linear regime, in accordance with experimental observations. We also perform a linear-stability analysis of the quasi-static solution in order to investigate the morphological stability of the radially symmetric growth pattern. We show that mechano-biological cues, as well as geometric effects related to the size of the MCTS subdomains with respect to the diffusion length of the nutrient, can drive a morphological transition to fingered structures, thus triggering the formation of complex shapes that might promote tumour invasiveness. The results also point out the formation of a retrograde flow in the MCTS close to the regions where protrusions form, that could describe the initial dynamics of metastasis detachment from the in vivo tumour mass. In conclusion, the results of the proposed model demonstrate that the integration of mathematical tools in biological research could be crucial for better understanding the tumour’s ability to invade its host environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Folkman, M. Hochberg, J. Exp. Med. 138, 745 (1973)

    Article  Google Scholar 

  2. H. Byrne, M. Chaplain, Eur. J. Appl. Math. 6, 639 (1997)

    Article  MathSciNet  Google Scholar 

  3. R. Sutherland, R. Durand, in Spheroids in Cancer Research, edited by H. Acker, J. Carlsson, R. Durand, R.M. Sutherland, Vol. 95 of Recent Results in Cancer Research (Springer, Berlin, Heidelberg, 1984) pp. 24--49

  4. K. Groebe, W. Mueller-Klieser, Eur. Biophys. J. 19, 169 (1991)

    Article  Google Scholar 

  5. R. Sutherland, Science 240, 177 (1988)

    Article  ADS  Google Scholar 

  6. J. Folkman, Adv. Cancer Res. 19, 331 (1974)

    Article  Google Scholar 

  7. V.R. Muthukarruppan, L. Kubai, R. Auerbach, J. Natl. Cancer Inst. 69, 699 (1982)

    Google Scholar 

  8. J.A. Adam, Math. Biosci. 81, 229 (1986)

    Article  Google Scholar 

  9. J.A. Adam, Math. Biosci. 86, 183 (1987)

    Article  Google Scholar 

  10. J.A. Adam, S.A. Maggelakis, Bull. Math. Biol. 52, 549 (1990)

    Article  Google Scholar 

  11. H. Byrne, M.A.J. Chaplain, Math. Biosci. 130, 151 (1995)

    Article  Google Scholar 

  12. H. Byrne, M.A.J. Chaplain, Math. Biosci. 135, 187 (1996)

    Article  Google Scholar 

  13. M.A.J. Chaplain, Experimental and Theoretical Advances in Biological Pattern Formation, chapter The development of a spatial pattern in a model for cancer growth (Plenum Press, 1993) pp. 45--60

  14. H.P. Greenspan, Studies Appl. Math. 52, 317 (1972)

    Article  Google Scholar 

  15. H. Byrne, J. Math. Biol. 39, 59 (1999)

    Article  MathSciNet  Google Scholar 

  16. S.A. Maggelakis, J.A. Adam, Math. Comput. Modell. 13, 23 (1990)

    Article  Google Scholar 

  17. D.L.S. McElwain, L.E. Morris, Math. Biosci. 39, 147 (1978)

    Article  Google Scholar 

  18. D. Ambrosi, L. Preziosi, Math. Models Methods Appl. Sci. 12, 737 (2002)

    Article  MathSciNet  Google Scholar 

  19. R.P. Araujo, D.L.S. McElwain, Bull. Math. Biol. 66, 1039 (2004)

    Article  MathSciNet  Google Scholar 

  20. J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinearity 23, R1 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. D. McElwain, G. Pettet, Bull. Math. Biol. 55, 655 (1993)

    Article  Google Scholar 

  22. C. Chen, H. Byrne, J. King, J. Math. Biol. 43, 191 (2001)

    Article  MathSciNet  Google Scholar 

  23. K.A. Landman, C.P. Please, Math. Med. Biol. 18, 131 (2001)

    Article  Google Scholar 

  24. M. Steinberg, Science 141, 401 (1963)

    Article  ADS  Google Scholar 

  25. R. Foty, G. Forgacs, C. Pflegerand, M. Steinberg, Phys. Rev. Lett. 72, 2298 (1994)

    Article  ADS  Google Scholar 

  26. G. Forgacs, R. Foty, Y. Shafrir, M. Steinberg, Biophys. J. 74, 2227 (1998)

    Article  ADS  Google Scholar 

  27. G. Vitale, L. Preziosi, Math. Models Methods Appl. Sci. 21, 1901 (2011)

    Article  MathSciNet  Google Scholar 

  28. M.A.J. Chaplain, B.D. Sleeman, J. Math. Biol. 31, 431 (1993)

    Article  MathSciNet  Google Scholar 

  29. R. Skalak, S. Zargaryan, R.K. Jain, P.A. Netti, A. Hoger, J. Math. Biol. 34, 889 (1996)

    Article  Google Scholar 

  30. D. Ambrosi, F. Mollica, J. Math. Biol. 48, 477 (2004)

    Article  MathSciNet  Google Scholar 

  31. T. Roose, P.A. Netti, L.L. Munn, Y. Boucher, R.K. Jain, Microvasc. Res. 66, 204 (2003)

    Article  Google Scholar 

  32. C. Voutouri, F. Mpekris, P. Papageorgis, A. Odysseos, T. Stylianopoulos, PLoS ONE 9, e104717 (2014)

    Article  ADS  Google Scholar 

  33. R. Vandiver, A. Goriely, J. Biol. Dyn. 3, 180 (2009)

    Article  MathSciNet  Google Scholar 

  34. T. Stylianopoulos, J.D. Martin, V.P. Chauhan, S.R. Jain, B. Diop-Frimpong, N. Bardeesy, B.L. Smith, C.R. Ferrone, F.J. Hornicek, Y. Boucher, L.L. Munn, R.K. Jain, Proc. Natl. Acad. Sci. U.S.A. 109, 15101 (2012)

    Article  ADS  Google Scholar 

  35. D. Ambrosi, L. Preziosi, Biomech. Model. Mechanobiol. 8, 397 (2009)

    Article  Google Scholar 

  36. D. Ambrosi, L. Preziosi, G. Vitale, Mech. Res. Commun. 42, 87 (2012)

    Article  Google Scholar 

  37. C. Giverso, M. Scianna, A. Grillo, Mech. Res. Commun. 68, 31 (2015)

    Article  Google Scholar 

  38. B. Aigouy, R. Farhadifar, D. Staple, A. Sagner, J. Röper, F. Jülicher, S. Eaton, Cell 142, 773 (2010)

    Article  Google Scholar 

  39. T. Vasilica Stirbat, S. Tlili, T. Houver, J.P. Rieu, C. Barentin, H. Delanoë-Ayari, Eur. Phys. J. E 36, 84 (2013)

    Article  Google Scholar 

  40. J. Ranft, M. Basan, J. Elgeti, J. Joanny, J. Prost, F. Jülicher, Proc. Natl. Acad. Sci. U.S.A. 107, 20863 (2010)

    Article  ADS  Google Scholar 

  41. J.J. Casciari, S.V. Sotirchos, R.M. Sutherland, Cell Prolif. 25, 1 (1992)

    Article  Google Scholar 

  42. M. Marusic, Z. Bajzer, J.P. Freyer, S. Vuk-Pavlovic, Cell Prolif. 27, 73 (1994)

    Article  Google Scholar 

  43. R. Muir, Muir’s Textbook of Pathology, 15th edition (CRC Press, 2012).

  44. S.S. Cross, D.W.K. Cotton, J. Pathol. 166, 409 (1992)

    Article  Google Scholar 

  45. S.S. Cross, J.P. Bury, P.B. Silcocks, T.J. Stephenson, D.W.K. Cotton, J. Pathol. 172, 317 (1994)

    Article  Google Scholar 

  46. G. Landini, J.W. Rippin, J. Pathol. 179, 210 (1996)

    Article  Google Scholar 

  47. R. Sutherland, R.E. Durand, Int. J. Radiat. Biol. 23, 235 (1973)

    Google Scholar 

  48. M. Tubiana, Brit. J. Radiol. 44, 325 (1971)

    Article  Google Scholar 

  49. H.P. Greenspan, J. Theor. Biol. 56, 229 (1976)

    Article  MathSciNet  Google Scholar 

  50. H. Byrne, M. Chaplain, Math. Comput. Model. 24, 1 (1996)

    Article  Google Scholar 

  51. M. Espinosa, G. Ceballos-Cancino, R. Callaghan, V. Maldonado, N. Patino, V. Ruíz, J. Meléndez-Zajgla, Cancer Lett. 318, 61 (2012)

    Article  Google Scholar 

  52. A. Nyga, U. Cheema, M. Loizidou, J. Cell Commun. Signal. 5, 239 (2011)

    Article  Google Scholar 

  53. S. Wise, J. Lowengrub, H. Frieboes, V. Cristini, J. Theor. Biol. 253, 524 (2008)

    Article  MathSciNet  Google Scholar 

  54. A. Ramanathan, C. Wang, S. Schreiber, Proc. Natl. Acad. Sci. U.S.A. 102, 992 (2005)

    Google Scholar 

  55. H. Byrne, L. Preziosi, Math. Med. Biol. 20, 341 (2003)

    Article  Google Scholar 

  56. K.J. Painter, Bull. Math. Biol. 71, 1117 (2009)

    Article  MathSciNet  Google Scholar 

  57. E.T. Roussos, J.S. Condeelis, A. Patsialou, Nat. Rev. Cancer 11, 573 (2011)

    Article  Google Scholar 

  58. E. Keller, L. Segel, J. Theor. Biol. 30, 225 (1971)

    Article  Google Scholar 

  59. A. Fathi-Azarbayjani, A. Jouyban, Bioimpacts 5, 29 (2015)

    Article  Google Scholar 

  60. T. Stirbat, A. Mgharbel, S. Bodennec, K. Ferri, H. Mertani, J.-P. Rieu, H. Delanoë-Ayari, PLoS ONE 8, e52554 (2013)

    Article  ADS  Google Scholar 

  61. G. Helmlinger, P.A. Netti, H.C. Lichtenbeld, R.J. Melder, R.K. Jain, Nat. Biotechnol. 15, 778 (1997)

    Article  Google Scholar 

  62. A. Nayfeh, Perturbation Methods (John Wiley and Sons, 2000)

  63. P. Ciarletta, Eur. Biophys. J. 41, 681 (2012)

    Article  Google Scholar 

  64. C. Giverso, M. Verani, P. Ciarletta, J. R. Soc. Interface 12, 20141290 (2015)

    Article  Google Scholar 

  65. C. Giverso, M. Verani, P. Ciarletta, Biomech. Model. Mechanobiol. 15, 643 (2015)

    Article  Google Scholar 

  66. M. Dorie, R. Kallman, D. Rapacchietta, D. Van Antwerp, Y. Huang, Exp. Cell Res. 141, 201 (1982)

    Article  Google Scholar 

  67. M. Delarue, F. Montel, O. Caen, J. Elgeti, J.M. Siaugue, D. Vignjevic, J. Prost, J.F. Joanny, G. Cappello, Phys. Rev. Lett. 110, 138103 (2013)

    Article  ADS  Google Scholar 

  68. H. Frieboes, X. Zheng, C.-H. Sun, B. Tromberg, R. Gatenby, V. Cristini, Cancer Res. 66, 1597 (2006)

    Article  Google Scholar 

  69. J. Langer, Rev. Mod. Phys. 52, 1 (1980)

    Article  ADS  Google Scholar 

  70. G. Cheng, J. Tse, R. Jain, L. Munn, PLoS ONE 4, e4632 (2009)

    Article  ADS  Google Scholar 

  71. F. Montel, M. Delarue, J. Elgeti, L. Malaquin, M. Basan, T. Risler, B. Cabane, D. Vignjević, J. Prost, G. Cappello, J.F. Joanny, Phys. Rev. Lett. 107, 188102 (2011)

    Article  ADS  Google Scholar 

  72. K. Alessandri, B.R. Sarangi, V.V. Gurchenkov, B. Sinha, T.R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjean, L. Rolland, A. Funfak, J. Bibette, N. Bremond, P. Nassoy, Proc. Natl. Acad. Sci. U.S.A. 110, 14843 (2013)

    Article  ADS  Google Scholar 

  73. R.K. Jain, J.D. Martin, T. Stylianopoulos, Annu. Rev. Biomed. Engin. 16, 321 (2014)

    Article  Google Scholar 

  74. K. Kopanska, Y. Alcheikh, R. Staneva, D. Vignjevic, T. Betz, PLoS ONE 11, e0156442 (2016)

    Article  Google Scholar 

  75. P. Provenzano, K. Eliceiri, J. Campbell, D. Inman, J. White, P. Keely, BMC Med 4, 38 (2006)

    Article  Google Scholar 

  76. L. Kaufman, C. Brangwynne, K. Kasza, E. Filippidi, V. Gordon, T. Deisboeck, D. Weitz, Biophys. J. 89, 635 (2005)

    Article  Google Scholar 

  77. K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. Willis, R. Hoffman, C. Figdor, S. Weiss, P. Friedl, J. Cell Biol. 201, 1069 (2013)

    Article  Google Scholar 

  78. A. Haeger, M. Krause, K. Wolf, P. Friedl, Biochim. Biophys. Acta 1840, 2386 (2014)

    Article  Google Scholar 

  79. C. Giverso, A. Grillo, L. Preziosi, Biomech. Model. Mechanobiol. 13, 481 (2014)

    Article  Google Scholar 

  80. A. Arduino, L. Preziosi, Int. J. Non-Linear Mech. 75, 22 (2015)

    Article  ADS  Google Scholar 

  81. C. Giverso, A. Arduino, L. Preziosi, “How Nucleus Mechanics and ECM Microstructure Influence the Invasion of Single Cells and Multicellular Aggregates,” submitted (2016)

  82. G. Sciumé, R. Santagiuliana, M. Ferrari, P. Decuzzi, B. Schrefler, Phys. Biol. 11, 065004 (2014)

    Article  ADS  Google Scholar 

  83. R.K. Jain, Sci. Am. 271, 58 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Ciarletta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giverso, C., Ciarletta, P. On the morphological stability of multicellular tumour spheroids growing in porous media. Eur. Phys. J. E 39, 92 (2016). https://doi.org/10.1140/epje/i2016-16092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16092-7

Keywords

Navigation