Skip to main content
Log in

Segregation of chain ends to the surface of a polymer melt: Effect of surface profile versus chain discreteness

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Silberberg has argued that the surface of a polymer melt behaves like a reflecting boundary on the random-walk statistics of the polymers. Although this is approximately true, independent studies have shown that violations occur due to the finite width of the surface profile and to the discreteness of the polymer molecule, resulting in an excess of chain ends at the surface and a reduction in surface tension inversely proportional to the chain length, N . Using self-consistent field theory (SCFT), we compare the magnitude of these two effects by examining a melt of discrete polymers modeled as N monomers connected by Hookean springs of average length, a , next to a polymer surface of width \( \xi\). The effects of the surface width and the chain discreteness are found to be comparable for realistic profiles of \( \xi\)a. A semi-analytical approximation is developed to help explain the behavior. The relative excess of ends at the surface is dependent on the details of the model, but in general it decreases for shorter polymers. The excess is balanced by a long-range depletion that has a universal shape independent of the molecular details. Furthermore, the approximation predicts that the reduction in surface energy equals one unit of kBT for every extra chain end at the surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Wittmer, A. Cavallo, H. Xu, J.E. Zabel, P. Poliüska, N. Schulmann, H. Meyer, J. Fatago, A. Johner, S.P. Obukhov, J. Baschnagel, J. Stat. Phys. 145, 1017 (2011)

    Article  ADS  Google Scholar 

  2. A. Silberberg, J. Colloid Interface Sci. 90, 86 (1982)

    Article  Google Scholar 

  3. C. Jalbert, J.T. Koberstein, I. Yilgor, P. Gallagher, V. Krukonis, Macromolecules 26, 3069 (1993)

    Article  ADS  Google Scholar 

  4. S.H. Anastasiadis, I. Gancarz, J.T. Koberstein, Macromolecules 21, 2980 (1988)

    Article  ADS  Google Scholar 

  5. B.B. Sauer, G.T. Dee, J. Colloid Interface Sci. 162, 25 (1994)

    Article  Google Scholar 

  6. S.K. Kumar, M. Vacatello, D.Y. Yoon, J. Chem. Phys. 89, 5206 (1988)

    Article  ADS  Google Scholar 

  7. I. Bitsanis, G. Hadziioannou, J. Chem. Phys. 92, 3827 (1990)

    Article  ADS  Google Scholar 

  8. S.K. Kumar, M. Vacatello, D.Y. Yoon, Macromolecules 23, 2189 (1990)

    Article  ADS  Google Scholar 

  9. A. Yethiraj, C.K. Hall, Macromolecules 23, 1865 (1990)

    Article  ADS  Google Scholar 

  10. R.S. Pai-Panandike, J.R. Dorgan, T. Pakula, Macromolecules 30, 6348 (1997)

    Article  ADS  Google Scholar 

  11. K.C. Daoulas, V.A. Harmandaris, V.G. Mavrantzas, Macromolecules 38, 5780 (2005)

    Article  ADS  Google Scholar 

  12. M. Müller, B. Steinmüller, K.C. Daoulas, A. Ramírez-Hernández, J.J. de Pablo, Phys. Chem. Chem. Phys. 13, 10491 (2011)

    Article  Google Scholar 

  13. D.T. Wu, G.H. Fredrickson, J.-P. Carton, A. Ajdari, L. Leiber, J. Polym. Sci., Part B 33, 2373 (1995)

    Article  Google Scholar 

  14. M.W. Matsen, P. Mahmoudi, Eur. Phys. J. E 37, 78 (2014)

    Article  Google Scholar 

  15. D.G. Anderson, J. Assoc. Comput. Mach. 12, 547 (1965)

    Article  MathSciNet  Google Scholar 

  16. P. Stasiak, M.W. Matsen, Eur. Phys. J. E 34, 110 (2011)

    Article  Google Scholar 

  17. M.W. Matsen, J.U. Kim, A.E. Likhtman, Eur. Phys. J. E 29, 107 (2009)

    Article  Google Scholar 

  18. D.C. Morse, G.H. Fredrickson, Phys. Rev. Lett. 73, 3235 (1994)

    Article  ADS  Google Scholar 

  19. M. Müller, J. Chem. Phys. 116, 9930 (2002)

    Article  ADS  Google Scholar 

  20. A. Cavallo, M. Müller, J.P. Wittmer, A. Johner, K. Binder, J. Phys.: Condens. Matter 17, S1697 (2005)

    ADS  Google Scholar 

  21. I.Y. Erukhimovich, A. Johner, J.F. Joanny, Eur. Phys. J. E 27, 435 (2008)

    Article  Google Scholar 

  22. S.K. Nath, J.D. McCoy, J.P. Donley, J.G. Curro, J. Chem. Phys. 103, 1635 (1995)

    Article  ADS  Google Scholar 

  23. F. Schmid, J. Chem. Phys. 104, 9191 (1996)

    Article  ADS  Google Scholar 

  24. P.G. de Gennes, C.R. Acad. Sci. Paris 307, 1841 (1988)

    Google Scholar 

  25. J.H. Jang, R. Ozisik, W.L. Mattice, Macromolecules 33, 7663 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Matsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, P., Matsen, M.W. Segregation of chain ends to the surface of a polymer melt: Effect of surface profile versus chain discreteness. Eur. Phys. J. E 39, 78 (2016). https://doi.org/10.1140/epje/i2016-16078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16078-5

Keywords

Navigation