Skip to main content
Log in

Numerical investigation of molecular nano-array in potential-energy profile for a single dsDNA

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A Rigorous numerical investigation on dsDNA translocation in quasi-2-dimensional nano-array filter is performed using Molecular Dynamics (MD) method. Various dsDNA molecules with different sizes are chosen in order to model Ogston sieving in a nano-array filter. The radius of gyration of dsDNA molecule is less than the characteristic length of the shallow region in nano-array. The dsDNA molecule is assumed to be in the 0.05M NaCl electrolyte. MD shows acceptable results for potential-energy profile for nano-array filter. According to the MD outcomes, the dsDNA electrophoretic mobility decreases almost linearly with dsDNA size and show the same trend as Ogston sieving for gel electrophoresis. In addition, different shapes for nano-array filter are studied for a unique dsDNA molecule. It is concluded that steeping the nano-array wall can cause the retardation of dsDNA translocation and decreases dsDNA electrophoretic mobility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.B. Smejkal, A. Lazarev, Separation Methods in Proteomics (CRC Press, 2005)

  2. A.I. Lishanskaya, M.I. Mosevitsky, Biochem. Biophys. Res. Commun. 52, 1213 (1973)

    Article  Google Scholar 

  3. G.N. Fayad, Computational Modeling of Biological Molecule Separation in Nanofluidic Devices (Massachusetts Institute of Technology, USA, 2010)

  4. Z.R. Li, G.R. Liu, J. Han, Y. Cheng, Y.Z. Chen, J.-S. Wang, N.G. Hadjiconstantinou, Phys. Rev. E 80, 041911 (2009)

    Article  ADS  Google Scholar 

  5. J. Han, H.G. Craighead, Science 288, 1026 (2000)

    Article  ADS  Google Scholar 

  6. J. Fu, P. Mao, J. Han, Appl. Phys. Lett. 87, 263902 (2005)

    Article  ADS  Google Scholar 

  7. J. Fu, J. Yoo, J. Han, Phys. Rev. Lett. 97, 018103 (2006)

    Article  ADS  Google Scholar 

  8. J. Han, J. Fu, R.B. Schoch, Lab on a Chip 8, 23 (2008)

    Article  Google Scholar 

  9. M. Muthukumar, Phys. Rev. Lett. 86, 3188 (2001)

    Article  ADS  Google Scholar 

  10. C.Y. Kong, M. Muthukumar, J. Chem. Phys. 120, 3460 (2004)

    Article  ADS  Google Scholar 

  11. R.B. Schoch, J. Han, P. Renaud, Rev. Mod. Phys. 80, 839 (2008)

    Article  ADS  Google Scholar 

  12. A. Meller, J. Phys.: Condens. Matter 15, R581 (2003)

    ADS  Google Scholar 

  13. J. Cebrián, M.J. Kadomatsu-Hermosa, A. Castán, V. Martínez, C. Parra, M.J. Fernández-Nestosa et al., Nucl. Acids Res. 1, gku1255 (2014)

    Google Scholar 

  14. H. Long, A. Kudlay, G. Schatz, J. Phys. Chem. B 110, 2918 (2006)

    Article  Google Scholar 

  15. J. Heng, A. Aksimentiev, C. Ho, P. Marks, Y. Grinkova, S. Sligar et al., Biophys. J. 90, 1098 (2006)

    Article  Google Scholar 

  16. M. Alishahi, K.R., O. Abouali, Russ. J. Electrochem. 51, 49 (2015)

    Article  Google Scholar 

  17. R. Carr, J. Comer, M. Ginsberg, A. Aksimentiev, IEEE Trans. Nanotechnol. 10, 75 (2011)

    Article  ADS  Google Scholar 

  18. M. Alishahi, R. Kamali, O. Abouali, Eur. Phys. J. E 38, 1 (2015)

    Article  Google Scholar 

  19. J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa et al., J. Comput. Chem. 26, 1781 (2005)

    Article  Google Scholar 

  20. J. Li, Basic Molecular Dynamics (Springer, The Netherlands, 2005)

  21. M. Bhandarkar, R. Brunner, C. Chipot, A. Dalke, S. Dixit, P. Grayson, J. Gullingsrud, NAMD User’s Guide, Urbana 51, 2003

  22. A.D. MacKerell, D. Bashford, M.L.D.R. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer et al., J. Phys. Chem. B 102, 3586 (1998)

    Article  Google Scholar 

  23. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  24. J.R. Comer, D.B. Wells, A. Aksimentiev, Modeling Nanopores for Sequencing DNA (Humana Press, 2011)

  25. T.F. Soules, G.H. Gilmer, M.J. Matthews, J.S. Stolken, M.D. Feit, J. Non-Cryst. Solids. 6, 1564 (2011)

    Article  ADS  Google Scholar 

  26. M. van Dijk, A.M. Bonvin, Nucl. Acids Res. 37, W235 (2009)

    Article  Google Scholar 

  27. A. Aksimentiev, R.K. Brunner, E. Cruz-Chú, J. Comer, IEEE Nanotechnol. Mag. 3, 20 (2009)

    Article  Google Scholar 

  28. N.C. Stellwagen, C. Gelfi, P.G. Righetti, Biopolymers 42, 687 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Kamali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alishahi, M., Kamali, R. & Abouali, O. Numerical investigation of molecular nano-array in potential-energy profile for a single dsDNA. Eur. Phys. J. E 39, 50 (2016). https://doi.org/10.1140/epje/i2016-16050-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16050-5

Keywords

Navigation