Skip to main content
Log in

Driven binary colloidal mixture in a 2D narrow channel with hard walls

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have investigated the properties of a driven equi-molar binary colloidal mixture confined to a two-dimensional narrow channel. The walls are hard and periodic boundary condition is applied along the channel. Colloidal particles perform Brownian motion in a solvent having a fixed temperature and interact with each other via a Debye-Hückel Coulombic interaction (Yukawa potential). A constant external force drives the colloids along the channel. Two species move oppositely to each other. Hydrodynamic interactions are neglected and the dynamics is assumed to be over-damped. The flow increases nonlinearly with the external force but does not exhibit a notable dependence on channel width. Above a critical driving force the system undergoes a homogeneous-to-laning transition. It is shown that the mean lane width as well as the laning order parameter increases with the channel width. The reentrance effect is observed in the narrow channel geometry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Löwen, J. Phys.: Condens. Matter 13, R415 (2001)

    Google Scholar 

  2. J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996)

  3. C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. E 74, 011403 (2006)

    Article  ADS  Google Scholar 

  4. A. Nikoubashman, C.N. Likos, G. Kahl, Soft Matter 9, 2603 (2013)

    Article  ADS  Google Scholar 

  5. M. Sullivan, K. Zhao, C. Harrison, R.H. Austin, M. Megens, A. Hollingsworth, W.B. Russel, Z.D. Cheng, T. Mason, P.M. Chaikin, J. Phys.: Condens. Matter 15, S11 (2003)

    ADS  Google Scholar 

  6. J. Dzubiella, G.P. Hoffmann, H. Löwen, Phys. Rev. E 65, 021402 (2002)

    Article  ADS  Google Scholar 

  7. J. Dzubiella, H. Löwen, J. Phys.: Condens. Matter 14, 9383 (2002)

    ADS  Google Scholar 

  8. H. Löwen, J. Dzubiella, Farady Discuss. 123, 99 (2003)

    Article  ADS  Google Scholar 

  9. R.R. Netz, Europhys. Lett. 65, 616 (2003)

    Article  ADS  Google Scholar 

  10. R.B. Pandey, J.F. Gettrust, R. Seyfarth, L.A. Cueva-Parra, Int. J. Mod. Phys. C 14, 955 (2003)

    Article  ADS  Google Scholar 

  11. J. Chakrabarti, J. Dzubiella, H. Löwen, Phys. Rev. E 70, 012401 (2004)

    Article  ADS  Google Scholar 

  12. J. Delhommelle, Phys. Rev. E 71, 016705 (2005)

    Article  ADS  Google Scholar 

  13. M. Köppl, P. Henseler, A. Erbe, P. Nielaba, P. Leiderer, Phys. Rev. Lett. 97, 208302 (2006)

    Article  ADS  Google Scholar 

  14. M. Rex, H. Löwen, Phys. Rev. E 75, 051402 (2007)

    Article  ADS  Google Scholar 

  15. M. Rex, H. Löwen, Eur. Phys. J. E 26, 143 (2008)

    Article  Google Scholar 

  16. D.V. Tkachenko, V.R. Misko, F.M. Peeters, Phys. Rev. E 80, 051401 (2009)

    Article  ADS  Google Scholar 

  17. P. Henseler, A. Erbe, M. Köppl, P. Leiderer, P. Nielab, Phys. Rev. E 81, 041402 (2010)

    Article  ADS  Google Scholar 

  18. N. Schwierz, P. Nielaba, Phys. Rev. E 82, 031401 (2010)

    Article  ADS  Google Scholar 

  19. T. Glanz, H. Löwen, J. Phys.: Condens. Matter 24, 464114 (2012)

    ADS  Google Scholar 

  20. J. Chakrabarti, J. Dzubiella, H. Löwen, Europhys. Lett. 61, 415 (2003)

    Article  ADS  Google Scholar 

  21. M.E. Leunissen, C.G. Christova, A.P. Hynninen, C.P. Royall, A.I. Campbell, A. Imhof, M. Dijkstra, R. van Roij, A. van Blaaderen, Nature (London) 437, 235 (2005)

    Article  ADS  Google Scholar 

  22. S.B. Santra, S. Schwarzer, H. Herrmann, Phys. Rev. E 54, 5066 (1996)

    Article  ADS  Google Scholar 

  23. P. Valiveti, D.L. Koch, Phys. Fluids 11, 3283 (1999)

    Article  ADS  Google Scholar 

  24. R. Jiang, D. Helbing, P.K. Shukla, Q.S. Wu, Physica A 368, 567 (2006)

    Article  ADS  Google Scholar 

  25. M.P. Ciamarra, A. Coniglio, M. Nicodemi, Phys. Rev. Lett. 94, 188001 (2005)

    Article  ADS  Google Scholar 

  26. P. Glasson, V. Dotsenko, P. Fozooni, M.J. Lea, W. Bailey, G. Papageorgiou, S.E. Andresen, A. Kristensen, Phys. Rev. Lett. 87, 176802 (2001)

    Article  ADS  Google Scholar 

  27. D. Wilms et al., J. Phys.: Condens. Matter 24, 464119 (2012)

    ADS  Google Scholar 

  28. Haghgooie, P.S. Doyle, Phys. Rev. E 70, 061408 (2004)

    Article  ADS  Google Scholar 

  29. A. Ricci, P. Nielaba, S. Sengupta, K. Binder, Phys. Rev. E 75, 011405 (2007)

    Article  ADS  Google Scholar 

  30. M.E. Foulaadvand, N. Ojaghlou, Phys. Rev. E 86, 021405 (2012)

    Article  ADS  Google Scholar 

  31. M.E. Foulaadvand, M.M. Shafiee, Eur. Phys. Lett. 104, 30002 (2013)

    Article  Google Scholar 

  32. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)

    Article  ADS  Google Scholar 

  33. D. Chaudhuri, S. Sengupta, J. Chem. Phys. 128, 194702 (2008)

    Article  ADS  Google Scholar 

  34. D.M. Heyes, J.R. Melrose, J. Non-Newtonian Fluid Mech. 46, 1 (1993)

    Article  Google Scholar 

  35. P.N. Pusey, in Liquids, Freezing and the Glass Transition, edited by J.P. Hansen (North Holland, Amsterdam, 1991)

  36. C.P. Royall, M.E. Leunissen, A.P. Hynninen, M. Dijkstra, A. van Blaaderen, J. Chem. Phys. 124, 244706 (2006)

    Article  ADS  Google Scholar 

  37. H. Löwen, J. Phys.: Condens. Matter 4, 10105 (1992)

    Google Scholar 

  38. Donald E. Ermak, J. Chem. Phys. 62, 4189 (1975)

    Article  ADS  Google Scholar 

  39. Donald E. Ermak, J. Chem. Phys. 62, 4197 (1975)

    Article  ADS  Google Scholar 

  40. M.P. Allen, D.J. Tildesly, in Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

  41. M.P. Allen, D. Quigley, Mol. Phys. 111, 3442 (2013)

    Article  ADS  Google Scholar 

  42. G.P. Hoffmann, H. Löwen, Phys. Rev. E 60, 3009 (1999)

    ADS  Google Scholar 

  43. G.P. Hoffmann, H. Lowen, J. Phys.: Condens. Matter 12, 7359 (2000)

    ADS  Google Scholar 

  44. Neil W. Ashkroft, N. David Mermin, Solid State Physics (Harcourt College Publisher, 1976)

  45. Y. Jamali, M.E. Foulaadvand, H. Rafii-Tabar, J. Comput. Theor. Nanosci. 7, 146 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahim Foulaadvand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foulaadvand, M., Aghaee, B. Driven binary colloidal mixture in a 2D narrow channel with hard walls. Eur. Phys. J. E 39, 37 (2016). https://doi.org/10.1140/epje/i2016-16037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16037-2

Keywords

Navigation