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Abstract. Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow
patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple
Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion
equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back
into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control
generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several
orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates
unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe
oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the
resting fluid and the unstable modes, these patterns are relatively stable over long times.

1 Introduction

Microfluidic devices offer the possibility to shape and en-
gineer the flow of Newtonian and complex fluids on the
micron scale at low Reynolds number Re [1–3] but also
in the inertial regime [4]. For example, for mixing sim-
ple Newtonian fluids at low Re, turbulence is not avail-
able and, instead, one uses sophisticated channel designs
and time-dependent electric or magnetic fields to create
persistent mixing patterns [1,5]. Such patterns also occur
in viscoelastic polymeric fluids [6] due to elastic instabil-
ities [7, 8] which ultimately lead to turbulent flow pat-
terns [9, 10]. In this article, we present new concepts for
designing fluid flow at low Reynolds numbers using meth-
ods from feedback control which are not common to the
microfluidics community. Our aim is to initiate novel ex-
periments in this direction. Instead in microfluidic devices
the experiments can also be performed in macroscopic sys-
tems with sufficiently large shear viscosity such that the
Reynolds number is low.

We illustrate our control methods for the most simple
fluid, the Newtonian fluid, and choose a two-dimensional
circular geometry that can be realized by a long rotat-
ing cylinder similar to the Taylor-Couette flow [11]. The
fluid vorticity obeys a diffusion equation and we can focus
on introducing and exploring the features of our feedback
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control strategies. They can then be applied to more com-
plex or viscoelastic fluids such as polymeric liquids [12].

We sense the mean fluid vorticity in one part of the cir-
cular geometry also called sensing area. Using either hys-
teretic or time-delayed feedback control, the mean vortic-
ity determines the angular velocity of the circular bound-
ary and thereby is fed back into the system. There is no
predefined reference state, which we drive the system into
using, for example, the static channel architecture of a
microfluidic device or external fields. Instead, our system
with feedback control is self-adaptive and generates self-
regulated flow patterns.

We will present and discuss two feedback strategies.
First, we will introduce hysteretic feedback control where
the mean vorticity initiates discrete switching events for
the angular velocity of the circular boundary. This is very
similar to temperature control by a thermostat which
switches heating on and off [13–17]. We will demonstrate
that self-regulated oscillations occur, the frequency of
which can be tuned over several orders of magnitude by
choosing appropriate system parameters.

Second, we will investigate how time-delayed feedback
control can be used to design fluid flow. Originally, it was
invented to control chaos and to stabilize unstable periodic
orbits (Pyragas control) [18]. More recently, time-delayed
feedback has been demonstrated to stabilize unstable fixed
points in a dynamical system [19]. The control scheme is
generic and applicable to a large variety of experimental
systems including an electronic chaos oscillator and cou-
pled neurons [20]. It was used in a Newtonian fluid at high
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Fig. 1. Feedback scheme for vorticity diffusion in a circular
domain. The mean vorticity in the sensing area, the output
signal, is transformed into an input signal by feedback con-
trol with either hysteresis or time delay, which determines the
angular velocity of the circular boundary.

Reynolds numbers to control the chaotic Taylor-Couette
flow [21] and most recently in colloidal systems [22–24]
and in liquid crystals [25]. Most often, in extended sys-
tems a local feedback scheme is used, which acts on each
variable. Feedback via a global control variable has been
explored in reaction-diffusion systems [26] and for Turing
patterns on networks [27]. In our case the global control
variable is the angular velocity of the circular boundary,
which is easy to implement in an experiment. Further-
more, it is separated from the sensing area, which is still
an unexplored strategy in the field of feedback control.

In the following, we identify regions in the parameter
space, where time-delayed feedback destabilizes the rest-
ing fluid. Close to the transition between the stable and
unstable regime long-lived oscillatory states in vorticity
occur, which for increasing delay time τ exhibit beats. For
τ larger than the intrinsic vortex diffusion time, they de-
velop into bursts of narrow pulses equally spaced in time.

The article is organized as follows. In sect. 2 we de-
scribe the model system at low Reynolds numbers with all
relevant equations. In sect. 3 we investigate the hysteretic
feedback scheme and present both analytic and numerical
results for the self-regulated oscillatory states. Then, we
address time-delayed feedback in sect. 4. We first iden-
tify the fastest growing, instable mode to set up the state
diagram in the parameter space. Then, we present full
numerical solutions in order to identify the characteris-
tic vorticity patterns with beats and localized pulses. We
finish with a discussion.

2 The model system

In the following we will study a Newtonian fluid in a cylin-
drical geometry as shown in fig. 1. For systems on the
micron scale or with sufficiently large fluid viscosity, we
assume small Reynolds number and describe fluid flow by
the time-dependent Stokes equations

ρ
∂

∂t
v = −∇p + η∇2v. (1)

In long cylinders of radius R, fluid flow becomes effectively
two-dimensional in the polar r-ϕ plane. Taking the curl of
eq. (1) and defining the vorticity Ωez = 1

2curlv, where
the unit vector ez is perpendicular to the polar plane, we
obtain the diffusion equation

∂Ω(r, t)
∂t

= ∇2Ω(r, t). (2)

For incompressible fluids div v = 0 holds and the fluid
velocity field is fully determined by its vorticity. In the
last equation we have already normalized lengths by cylin-
der radius R and time by the diffusion time τ0 = ρR2/η,
which the fluid vorticity needs to diffuse through the whole
system.

We will use the simple circular geometry to explore
control strategies in systems at low Reynolds number such
that fluid flow is laminar. Flow in the circular domain is
generated by rotating the outer boundary with a rota-
tional velocity determined through a feedback loop (see
fig. 1). This creates a vortex at the boundary, which dif-
fuses through the system. In the “sensing area” of size
As = πr2

max, an output signal is evaluated as the mean
vorticity

Ω(t) = 1/As

∫∫
Ω(r, t) dA. (3)

The output goes through a feedback scheme either with
hysteresis or time delay. The feedback scheme generates
an input signal which controls the rotational velocity at
the boundary. This procedure defines the whole feedback
loop.

Since vorticity is the same at each point of the bound-
ary, we have an axisymmetric problem and vorticity in the
circular domain only depends on the radial coordinate r:
Ω = Ω(r, t). The Laplacian in the diffusion equation (2)
then becomes

∇2
r =

∂2

∂r2
+

1
r

∂

∂r
. (4)

To solve eq. (2), one has to supplement it by initial and
boundary conditions. Furthermore, to have a smooth vor-
ticity field in the center of the circular domain,

∂rΩ(r, t)
∣∣
r=0

= 0

must be fulfilled at all times. For example, when the
boundary rotates with constant angular velocity Ω0, the
fluid velocity points along the azimuthal direction with
component vϕ = Ω0r and the vorticity Ω(r, t) = Ω0 is con-
stant over the whole domain [28]. The feedback schemes
mentioned before prescribe the vorticity at the circular
boundary Ω(r = 1, t) ≡ Ω0(t), which corresponds to a
Dirichlet boundary condition. The value of Ω0(t), the in-
put signal, is determined from the output signal, the mean
vorticity. For feedback control with hysteresis, the angular
velocity of the boundary switches discontinuously between
Ω0 = ±1 (see sect. 3) and for time-delayed feedback it
varies continuously with the mean vorticity in the sensing
area (see sect. 4).

The operator in eq. (4) has the zeroth Bessel func-
tions as eigenfunctions, namely of the first kind, J0(r),
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Fig. 2. Scheme for hysteretic feedback control. The output, the
mean vorticity Ω, determines the input, the angular velocity
of the circular boundary Ω0 = Ω(r = 1, t).

and the second kind, Y0(r), and the eigenvalue is one.
Without the axial symmetry of our problem, also higher-
order Bessel functions would become important. The fluid
vorticity should be finite at r = 0 and we only need to con-
sider J0(r), since Y0(r) diverges at r = 0. We will use this
information in sect. 4.1.

3 Feedback control with hysteresis

In the hysteretic feedback scheme the mean vorticity Ω
basically oscillates between a minimum and a maximum
value, Ωmin and Ωmax. The input signal, the new angu-
lar velocity Ω0 of the boundary, depends not only on
Ω but also on the current value of Ω0 as fig. 2 demon-
strates. If the mean vorticity falls below the lower thresh-
old, Ω(t) < Ωmin, the angular velocity Ω0 is switched from
−1 to +1. The mean vorticity increases and if it becomes
larger than the upper threshold, Ω(t) > Ωmax, the angular
velocity Ω0 of the circular boundary reverses again from
+1 to −1. A whole cycle is completed, when Ω(t) reaches
Ωmin. After some transient regime, this scheme produces
a self-regulated, regular oscillation of the circular geom-
etry if the boundary value Ω0 falls outside the interval
[Ωmin, Ωmax]. Otherwise, for Ωmin < Ω0 < Ωmax the con-
tainer rotates steadily with a constant angular velocity. In
the following we present a formal analytic solution of the
problem as well as concrete numerical results.

3.1 Analytic solution

The general solution of the diffusion equation with non-
zero (non-homogeneous) boundary and intitial conditions
can be formulated using Green’s function g(r, t|r′, t′) [29]

Ω(r, t) =
∫ t

t0

∮
S′

[
g(r, t|r′, t′)∇′Ω(r′, t′)

−Ω(r′, t′)∇′g(r, t|r′, t′)
]
· ndS′ dt′

+
∫

V ′
Ω(r′, t0)g(r, t|r′, t0) dV ′. (5)

The boundary values for Ω and its derivatives contribute
via the first integral, where n is the surface normal, and

the initial value at time t0 appears in the second inte-
gral. Green’s function solves the diffusion equation with
zero (homogeneous) boundary condition. In our case, for
the axisymmetric system the boundary condition is g(r =
1, t|r′, t′) = 0 and Green’s function reads [29]

g(r, t|r′, t′) =
Θ(t − t′)

π

∞∑
n=1

J0(knr′)J0(knr)
J2

1 (kn)

× exp
[
− k2

n(t − t′)
]
. (6)

Here Jm(x) is the m-th Bessel function of the first kind
and kn denotes the n-th positive root of J0(kn) = 0. In
our case, we only prescribe the surface value Ω0 at r = 1
and eq. (5) becomes

Ω(r, t) = −2π

∫ t

t0

Ω0(t′)∂r′g(r, t|r′, t′)
∣∣∣∣
r′=1

dt′

+2π
∫ 1

0

Ω(r′, t0)g(r, t|r′, t0)r′ dr′. (7)

Since in the hysteretic feedback control, Ω0 at the
boundary switches between +1 and −1 at times tN , we
construct the overall solution piecewise:

Ω(r, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΩI(r, t), if 0 < t < tI ,

ΩII(r, t), if tI < t < tII ,

. . . ,

ΩN (r, t), if tN−1 < t < tN ,

. . . .

(8)

Suppose the system is in the N -th cycle with solution
ΩN (r, t) and the mean vorticity ΩN (t) either reaches Ωmin

from above or Ωmax from below at the switching time tN .
Then the boundary value Ω0,N at r = 1 reverses its sign
to the boundary value Ω0,N+1, which is either +1 or −1.
Assuming that Ω0,N = 1 for N = 1, the full solution in the
(N +1)-st cycle using eqs. (6), (7), and

∫ r

0
J0(knr′)r′ dr′ =

r/knJ1(knr) reads

ΩN+1(r, t) =

2
∞∑

n=1

{
(−1)N+1

kn

J0(knr)
J1(kn)

(
1 − exp

[
−k2

n(t − tN )
])}

+2
∫ 1

0

dr′
[
r′ΩN (r′, tN )

×
∞∑

n=0

{
J0(knr′)J0(knr)

J2
1 (kn)

exp
[
−k2

n(t − tN )
] }]

. (9)

We take here the solution ΩN (r, tN ) as initial condition
to calculate the solution ΩN+1(r, t), where tN is the N -
th switching time determined by ΩN (tN ) = Ωmin or
Ωmax. For completeness, we give the mean vorticity in
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Fig. 3. a) Fluid vorticity Ω(r, t) plotted versus radial coordi-
nate r and time t for Ωmax = −Ωmin = 0.5 and rmax = 0.5.
b) Fluid vorticity Ω(r, t) plotted versus t for selected radial
positions. The curves are also indicated in a).

the N -th cycle:

ΩN (t) = 2
∫ rmax

0

rΩN (r, t) dr

= 2
∞∑

n=1

{
(−1)N+1

k2
n

J1(knrmax)
J1(kn)

(
1−exp

[
−k2

n(t−tN )
])}

+2
∫ 1

0

dr′
[
r′ΩN (r′, tN )

×
∞∑

n=0

{
J0(knr′)J1(knrmax)

knJ2
1 (kn)

exp
[
−k2

n(t − tN )
] }]

. (10)

This completes the analytic solution for the fluid vor-
ticity under hysteretic feedback control. In principal, it
can be implemented, for example, in Mathematica. We
chose an alternative way and solved the diffusion equa-
tion numerically using a simple finite-difference method
with an Euler scheme on a two-dimensional grid in polar
coordinates.

3.2 Numerical results

In fig. 3a) we plot the numerically determined vortic-
ity Ω(r, t) versus radial coordinate r and time t. At the
boundary at r = 1 the discontinuous switching events of
the hysteretic feedback are visible. In the bulk fluid (r < 1)
the switching becomes smoothed out since the vorticity

a)
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Fig. 4. a) Color-coded frequency f of oscillations induced by
hysteretic feedback plotted versus Ωmax = −Ωmin and rmax.
All quantities are plotted on a logarithmic scale. b) Frequency
f versus Ωmax for several rmax. c) Frequency f versus rmax for
several Ωmax.

has to diffuse towards the center. The smoothing becomes
better visible in fig. 3b), where we plot Ω(r, t) for selected
radial positions. While at r = 0.8 the sharp transitions
from the hysteretic feedback at the circular boundary are
still visible, the vorticity at r = 0 shows a smooth mod-
ulation due to diffusion. The maximum of the vorticity
is delayed in time relative to the sharp switching events
at the boundary. The time delay is completey determined
by the diffusion time τ0 and independent of the feedback
parameters.

The hysteretic feedback leads to a self-regulated oscil-
lation, the frequency of which is regulated by the thresh-
old frequency Ωmax = −Ωmin and the sensor size rmax.
The color-coded frequency f plotted in fig. 4a) shows
that the frequency variation ranges over several orders
of magnitudes. Note the logarithmic scale for all quan-
tities. Figures 4b) and c) show curves for either constant
rmax or Ωmax. The general trend for frequency f is clear.
It increases for decreasing Ωmax since the mean vortic-
ity Ω reaches the threshold frequency faster. Likewise f
also increases with increasing rmax since the sensing area
reaches further to the boundary, where the vorticity is al-
ways larger in the non-steady state, i.e., before the system
establishes the constant steady-state value Ω(r, t) = Ω0

without switching events. Figure 4b) reveals that f reaches
finite, non-zero values for both Ωmax → 0 and Ωmax → 1.
However, formally at Ωmax = 0 the frequency should be
infinite since Ω(t) reaches the threshold instantaneously
while for Ωmax ≥ 1 oscillations do not occur (f = 0) since
in this case the driving angular velocity Ω0 = 1 is always
equal to or smaller than Ωmax ≥ 1 thus the threshold is
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never reached. Likewise, for rmax → 0 the frequency ap-
proaches a non-zero value as illustrated in fig. 4c) while at
rmax = 0 no feeback is implemented and f is zero. Finally,
for rmax = 1 and Ωmax → 0, we expect a real divergence
in f since Ω starts to increase instantaneously.

4 Time-delayed feedback control

We now explore our second feedback scheme to control
fluid vorticity in the circular domain. We implement feed-
back with time delay to control the angular velocity Ω0

of the circular boundary. Concretely, we set Ω0 by com-
paring the mean vorticity at time t − τ with its value at
time t:

Ω0 = k[Ω(t − τ) − Ω(t)], (11)

where k is the feedback strength and τ is the delay time.
This feedback scheme is typically used for stabilizing oscil-
lating states that otherwise would be unstable [18,19,30].

However, in our case we apply this scheme to a stable
system and study for which parameters k and τ it be-
comes unstable. In ref. [19] this scenario was investigated
for a simple discrete system with two degrees of freedom.
Classically, time-delayed feedback is implemented locally
at each space point [18,19,26]. Here, we use a global imple-
mentation by introducing the integrated or mean vorticity
to control the angular velocity Ω0 of the boundary, so it
can easily be realized experimentally.

4.1 Stability analysis

To study the stability of our system against axially sym-
metric disturbances, we take the standard ansatz for the
local vorticity

Ω(r, t) = φα(r)eαt. (12)

Zero vorticity is stable for Re(α) < 0, while for Re(α) > 0
the vorticity diverges in time. In between at Re(α) = 0 an
oscillating state with constant amplitude occurs, which is,
however, unstable against perturbations in the parame-
ters k, τ . Inserting the ansatz for Ω(r, t) in the diffusion
equation (2) and using the radial part of the Laplacian
(see eq. (4)), we arrive at the eigenvalue equation

(
∂2

∂r2
+

1
r

∂

∂r

)
φα(r) = αφα(r). (13)

It is solved by the zeroth Bessel function of the first kind,
φ(r) = J0(i

√
αr), as already discussed in sect. 2. The

mean vorticity defined in eq. (3) becomes

Ω(t) = eαtφα, (14)

with φα = 2J1(i
√

αrmax)/(irmax
√

α). The first Bessel
function of the first kind results from the integration over
r. Using this solution in the feedback equation (11), we
obtain

J0(i
√

α) = k(e−ατ − 1)
2

irmax
√

α
J1(i

√
αrmax). (15)
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Fig. 5. Solutions of the real (blue) and imaginary (red) part
of eq. (15) in the Re α-Im α plane. Main plot: the parameters
are k = 5, τ = 1, and rmax = 0.5. Inset: the parameters are
k = 5, τ = 0.2, and rmax = 0.5.

This implicit equation has no closed solution but it can be
solved numerically in order to determine α. Figure 5 shows
curves in the Reα-Im α plane, which solve, respectively,
the real and the imaginary part of eq. (15) for two sets of
parameters. The intersection of the two curves then gives
a complex α as a solution of eq. (15). The inset illustrates
the only solution in the chosen ranges for Reα and Imα
at a small τ = 0.2. Increasing τ generates more and more
solutions in the same range as the main plot of fig. 5 shows.
This behavior comes from the factor exp(−ατ) in eq. (15)
but obviously we cannot simply rescale α with τ . We are
mainly interested in the solution with the largest real part
of α, which determines the vorticity field at long time
scales, but will also comment on the influence of the other
complex relaxation rates α.

Figure 6a) shows the stability or state diagram in the
k-τ plane. For several rmax we determined the transi-
tion lines between stable and unstable states by setting
Re α = 0 for the largest real part of α. To the left of
the transition line Reα < 0 and the resting state with
Ω(r, t) = 0 is stable. Any disturbance with Ω(r, t = 0) �= 0
decays to zero as the vorticity in fig. 6b) shows. To the
right of the transition line Reα > 0. The vorticity grows
in time and diverges eventually as illustrated by the mean
vorticity in fig. 6c). Precisely on the transition line os-
cillations of the vorticity with constant amplitude occur.
Figure 6d) shows these oscillations at different radial co-
ordinates. The non-zero phase shift between the curves
results from the vorticity diffusion. However, the oscilla-
tions either decay to zero or diverge for any small variation
in k and τ . Note that all curves in figs. 6b)-d) were deter-
mined by numerically solving the vortex-diffusion equa-
tion together with boundary condition (11).

The angular frequency of damped or diverging oscilla-
tions is determined by the imaginary part Imαm, where
αm is again the eigenvalue with the largest real part
Re αm. Figure 7 shows that the range of Imαm covers
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Fig. 6. a) State diagram in the k-τ plane. The transition line
between stable and unstable states is indicated for different
values of rmax. b)-d) Vorticity field Ω(r, t) plotted versus time
for several radial positions. b) For the stable state at k = 3,
τ = 0.3, and rmax = 0.5, c) for the unstable state at k = 8,
τ = 0.3, and rmax = 0.5 and d) on the transition line at k =
3.68, τ = 0.5, and rmax = 0.5.

nearly two orders of magnitude in the given parameter
space. An overall increase with k is observed. The discon-
tinuities result when the complex solution αm of eq. (15)
jumps from one solution branch (see fig. 5) to another.
When comparing with the state diagram in fig. 6, we ob-
serve that in the stable regime disturbances are purely
damped at low k. Increasing k towards the transition line,
we observe that damped oscillations start to appear, while
in the unstable regime oscillations always occur.

4.2 Beyond stability analysis

We also solved the vortex diffusion equation numerically
together with the feedback boundary condition using a
simple Euler scheme. This allows to shortly discuss full
solutions beyond the stability analysis that should be ob-
servable in experiments. We already discussed in connec-
tion with fig. 5 that an increase in τ increases the number

Fig. 7. Color-coded imaginary part Im αm of the exponent αm

with the largest Re αm plotted in the k-τ plane for rmax = 0.5.
Im αm dominates the angular frequency of oscillations.
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Fig. 8. Vorticity Ω(r, t) plotted versus time at several radial
positions. The full numerical solution shows oscillations with
beats in the unstable regime of the state diagram. Parameters
are: a) k = 4, τ = 1, and rmax = 0.5, and b) k = 4.8, τ = 3,
and rmax = 0.5.

of modes in a given range of Imα. As a result, the super-
position of several of these modes creates interesting os-
cillation patterns with beats in the amplitude. Figure 8a)
shows such beats in the vorticity at different radial coor-
dinates close to the transition line between the stable and
unstable regime at τ = 1. This means the overall ampli-
tude only increases weakly. To observe such beats, the real
parts of the complex rates α have to be similar, otherwise
one mode would dominate right from the beginning. In
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Fig. 9. Vorticity field Ω(r, t) plotted versus time for several
radial positions using a cutoff Ω0,max = 1 in the feedback pro-
tocol as explained in eq. (16). Other parameters are k = 8,
τ = 0.3, and rmax = 0.5, compare to fig. 6c) without the cutoff.

fig. 8b) we increase τ to 3. Now, the superposition of sev-
eral modes with similar frequencies creates narrow pulses
which form a regular puls train. Since the delay time τ = 3
is larger than the characteristic vortex diffusion time, the
system always develops a constant vorticity throughout
the circular domain and between the pulses. Then, after
the delay time τ the last pulse initiates a new pulse and so
on. At larger τ and even further away from the transition
line the real parts of the complex α are still small and the
amplitude of the pulses only increase slowly.

Finally, a straightforward modification in the feedback
protocol helps to stabilize the unstable oscillations. We
simply introduce an upper bound for the magnitude of
Ω0. Equation (11) then changes to

Ω0 =

{
k

[
Ω(t − τ) − Ω(t)

]
, if |Ω0| < Ω0,max,

±Ω0,max, else,
(16)

where the parameter Ω0,max sets the amplitude of the os-
cillations at the boundary. This is illustrated in fig. 9.

5 Summary and conclusions

The aim of this artice was to introduce strategies of feed-
back control to design and engineer the flow of complex
fluids in the regime of low Reynolds numbers. In experi-
ments they are, for example, realizable in microfluidic ge-
ometries. To introduce and study basic features of our con-
trol strategies, namely hysteretic and time-delayed feed-
back, we investigated simple vortex diffusion in a circular
domain. The mean vorticity in the sensing area is fed back
into the system via the angular velocity of the circular
boundary.

With hysteretic feedback discrete switching events of
the circular boundary are initiated that generate self-regu-
lated oscillations, the frequency of which can be tuned over
several orders of magnitude via the feedback parameters.
The parameters to vary are the maximum and minimum
mean vorticity and the radius of the sensing area. In more
complex fluids with intrinsic characteristic frequencies, we

expect that the self-regulated oscillations couple to the
intrinsic modes and help to explore their dynamics.

Time-delayed feedback generates unstable vorticity
modes for sufficiently large feedback strength. Close to the
transition line between stable and unstable states, long-
lived oscillatory patterns occur. For increasing delay time
τ more and more oscillatory modes with complex frequen-
cies lying close together contribute to these oscillatory pat-
terns. At τ ≈ 1 they exhibit beats and for τ > 1 they
form regular trains of narrow pulses separated by a quasi-
stationary state of uniform vorticity. Introducing an upper
bound for the angular velocity of the circular boundary,
stabilizes the unstable oscillations.

Using the characteristic diffusion time τ0 = ρR2/η and
the velocity of the outer boundary, v = 2πfR, where we
have introduced the oscillation frequency f , we can rewrite
the Reynolds number Re = �va/η as Re = τ0f . In both
control strategies the frequencies of the observed oscilla-
tions are around 1/τ0 or well above. So the interesting
features, observed in this article, happen in a regime of
moderate Reynolds number, where the non-linear term in
the Navier-Stokes equations cannot be neglected and our
analysis strictly does not apply. It will be interesting to
explore in an experiment how much these features are in-
fluenced by inertial effects and monitor the new flow pat-
terns. They should also have radial velocity components
in addition to the azimuthal component treated in this
article.

Complex fluids such as polymeric liquids, which ex-
hibit elastic instabilities [9, 31], or phase-separating fluid
mixtures [32–34] show are more complex intrinsic dynam-
ics than the simple vortex diffusion. Certainly, the oscilla-
tory motion of the circular domain, induced by the feed-
back strategies, will couple to the characteristic modes
and generate new flow patterns. For example, polymeric
liquids show elastic turbulence due to an elastic instabil-
ity [9]. One challenge will be to stabilize a regular periodic
flow pattern in this turbulent regime using time-delayed
feedback as originally suggested by Pyragas [18].

We acknowledge support by the Deutsche Forschungsgemein-
schaft in the framework of the collaborative research center
SFB 910.

Open Access This is an open access article distributed
under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

References

1. H. Stone, A. Stroock, A. Ajdari, Annu. Rev. Fluid Mech.
36, 381 (2004).

2. T. Squires, S. Quake, Rev. Mod. Phys. 77, 977 (2005).
3. G.M. Whitesides, Nature 442, 368 (2006).
4. H. Amini, E. Sollier, M. Masaeli, Y. Xie, B. Ganapathysub-

ramanian, H.A. Stone, D. Di Carlo, Nat. Commun. 4, 1826
(2013).



Page 8 of 8 Eur. Phys. J. E (2015) 38: 22

5. D. Rothstein, E. Henry, J. Gollub, Nature 401, 770 (1999).
6. B. Thomases, M. Shelley, Phys. Rev. Lett. 103, 094501

(2009).
7. P.E. Arratia, C.C. Thomas, J. Diorio, J.P. Gollub, Phys.

Rev. Lett. 96, 144502 (2006).
8. L. Pan, A. Morozov, C. Wagner, P.E. Arratia, Phys. Rev.

Lett. 110, 174502 (2013).
9. A. Groisman, V. Steinberg, Nature 405, 53 (2000).

10. A. Groisman, V. Steinberg, Nature 410, 905 (2001).
11. G.I. Taylor, Philos. Trans. R. Soc. London, Ser. A 223,

289 (1923).
12. R. Bird, R. Armstrong, O. Hassager, Dynamics of Poly-

meric Liquids, Vol. 1, 2nd edition, Fluid Mechanics (A
Wiley-Interscience Publication, John Wiley & Sons, 1987).

13. A. Friedman, L.-S. Jiang, Commun. Part. Diff. Eq. 13, 515
(1988).

14. T. Seidman, Switching Systems and Periodicity (Springer,
1989).
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