Skip to main content
Log in

Multi-scale undulations in human aortic endothelial cell fibers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Blood vessels often have an undulatory morphology, with excessive bending, kinking, and coiling occuring in diseased vasculature. The underlying physical causes of these morphologies are generally attributed, in combination, to changes in blood pressure, blood flow rate, and cell proliferation or apoptosis. However, pathological vascular morphologies often start during developmental vasculogenesis. At early stages of vasculogenesis, angioblasts (vascular endothelial cells that have not formed a lumen) assemble into primitive vessel-like fibers before blood flow occurs. If loose, fibrous aggregates of endothelial cells can generate multi-cellular undulations through mechanical instabilities, driven by the cytoskeleton, new insight into vasculature morphology may be achieved with simple in vitro models of endothelial cell fibers. Here we study mechanical instabilities in vessel-like structures made from endothelial cells embedded in a collagen matrix. We find that endothelial cell fibers contract radially over time, and undulate at two dominant wavelengths: approximately 1cm and 1mm. Simple mechanical models suggest that the long-wavelength undulation is Euler buckling in rigid confinement, while the short-wavelength buckle may arise from a mismatch between fiber bending energy and matrix deformation. These results suggest a combination of fiber-like geometry, cystoskeletal contractions, and extracellular matrix elasticity may contribute to undulatory blood vessel morphology in the absence of a lumen or blood pressure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.E. Discher, P. Janmey, Y.-l. Wang, Science 310, 5751 (2005).

    Article  Google Scholar 

  2. A. Harris, P. Wild, D. Stopak, Science 208, 4440 (1980).

    Google Scholar 

  3. M. Dembo, Y.-L. Wang, Biophys. J. 76, 4 (1999).

    Article  Google Scholar 

  4. S. Lehoux, A. Tedgui, J. Biomech. 36, 5 (2003).

    Article  Google Scholar 

  5. B. Langille, R. Brownlee, S. Adamson, Am. J. Physiol. 259, 28 (1990).

    Google Scholar 

  6. R.A. Bomberger et al., J. Surgical Res. 28, 5 (1980).

    Article  Google Scholar 

  7. J.R. Guyton, C.J. Hartley, Am. J. Physiol. 248, H540 (1985).

    Google Scholar 

  8. L. Pellegrino, G. Prencipe, F. Vairo, Minerva Cardioangiol. 46, 3 (1998).

    Google Scholar 

  9. D. Mukherjee, T. Inahara, Am. J. Surgery 149, 5 (1985).

    Article  Google Scholar 

  10. P. Pancera et al., Int. Angiol. 17, 1 (1998).

    Google Scholar 

  11. A.M. Waxman, Microvascular Res. 22, 1 (1981).

    Article  Google Scholar 

  12. R. Beigelman et al., Angiology 61, 1 (2010).

    Article  Google Scholar 

  13. C. Tickle, Principles of development (Oxford University Press, 2011).

  14. W. Risau, Nature 386, 6626 (1997).

    Google Scholar 

  15. E. Bell, B. Ivarsson, C. Merrill, Proc. Natl. Acad. Sci. U.S.A. 76, 3 (1979).

    Google Scholar 

  16. J. Howard, Mechanics of motor proteins and the cytoskeleton (Sinauer Associates Inc., 2001).

  17. C.P. Brangwynne et al., Biophys. J. 93, 1 (2007).

    Article  Google Scholar 

  18. C.P. Brangwynne et al., J. Cell Biol. 173, 5 (2006).

    Article  Google Scholar 

  19. L. Cipelletti, D. Weitz, Rev. Sci. Instrum. 70, 8 (1999).

    Article  Google Scholar 

  20. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory and Elasticity (Pergamon Press, 1959).

  21. D. Vader et al., PLoS ONE 4, 6 (2009).

    Article  Google Scholar 

  22. N. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 98, 14 (2001).

    Article  Google Scholar 

  23. J. Wu et al., Mol. Biol. Cell 22, 24 (2011).

    Google Scholar 

  24. N. Shekhar et al., Cell. Mol. Bioengin. 6, 2 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Angelini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frketic, J.B., DeLaPeña, A., Suaris, M.G. et al. Multi-scale undulations in human aortic endothelial cell fibers. Eur. Phys. J. E 38, 12 (2015). https://doi.org/10.1140/epje/i2015-15012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15012-9

Keywords

Navigation