Skip to main content
Log in

Translational and rotational temperatures of a 2D vibrated granular gas in microgravity

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present an experimental study performed on a vibrated granular gas enclosed into a 2D rectangular cell. Experiments are performed in microgravity conditions achieved during parabolic flights. High speed video recording and optical tracking allow to obtain the full kinematics (translation and rotation) of the particles. The inelastic parameters are retrieved from the experimental trajectories as well as the translational and rotational velocity distributions. We report that the experimental ratio of translational versus rotational temperature decreases with the density of the medium but increases with the driving velocity of the cell. These experimental results are compared with existing theories and we point out the differences observed. We also present a model which fairly predicts the equilibrium experimental temperatures along the direction of vibration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.J. Holland, C.R. Müller, J.S. Dennis, L.F. Gladden, A.J. Sederman, Powder Technol. 182, 171 (2008)

    Article  Google Scholar 

  2. Y. Chen, P. Evesque, M. Hou, C. Lecoutre, F. Palencia, Y. Garrabos, J. Phys.: Conf. Ser. 327, 012033 (2011)

    ADS  Google Scholar 

  3. R.D. Wildman, D.J. Parker, Phys. Rev. Lett. 88, 064301 (2002)

    Article  ADS  Google Scholar 

  4. K. Feitosa, N. Menon, Phys. Rev. Lett. 88, 198301 (2002)

    Article  ADS  Google Scholar 

  5. J.S. Olafsen, J.S. Urbach, Phys. Rev. E 60, R2468 (1999)

    Article  ADS  Google Scholar 

  6. W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli, J.P. Gollub, Chaos 9, 682 (1999)

    Article  ADS  MATH  Google Scholar 

  7. K. Harth, U. Kornek, T. Trittel, U. Strachauer, S. Höme, K. Will, R. Stannarius, Phys. Rev. Lett. 110, 144102 (2013)

    Article  ADS  Google Scholar 

  8. M.A. Hopkins, M.Y. Louge, Phys. Fluids A3, 47 (1991)

    Article  ADS  Google Scholar 

  9. E. Livne, B. Meerson, P.V. Sasorov, Phys. Rev. E 65, 021302 (2002)

    Article  ADS  Google Scholar 

  10. I. Goldhirsch, Powder Technol. 182, 130 (2008)

    Article  Google Scholar 

  11. L.J. Daniels, Y. Park, T.C. Lubensky, D.J. Durian, Phys. Rev. E 79, 041301 (2009)

    Article  ADS  Google Scholar 

  12. L. Labous, A.D. Rosato, R.N. Dave, Phys. Rev. E 56, 5717 (1997)

    Article  ADS  Google Scholar 

  13. T. Jenkins, C. Zhang, Phys. Fluids 14, 1228 (2002)

    Article  ADS  Google Scholar 

  14. O. Herbst, M. Huthmann, A. Zippelius, Granular Matter 2, 211 (2000)

    Article  Google Scholar 

  15. O. Herbst, R. Cafiero, A. Zippelius, H.J. Herrmann, S. Luding, Phys. Fluids 17, 107102 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Nichol, K.E. Daniels, Phys. Rev. Lett. 108, 018001 (2012)

    Article  ADS  Google Scholar 

  17. M. Hou, R. Liu, G. Zhai, Z. Sun, K. Lu, Y. Garrabos, P. Evesque, Micrograv. Sci. Technol. 20, 73 (2008)

    Article  Google Scholar 

  18. S. Tatsumi, Y. Murayama, M. Sano, AIP Conf. Proc. 1027, 923 (2008) DOI:10.1063/1.2964895

    Article  ADS  Google Scholar 

  19. C. Maaß, N. Isert, G. Maret, C.M. Aegerter, Phys. Rev. Lett. 100, 248001 (2008)

    Article  ADS  Google Scholar 

  20. Y. Chen, M. Hou, P. Evesque, Y. Jiang, M. Liu, Powders & Grains 1542, 791 (2013)

    Google Scholar 

  21. Y. Grasselli, G. Bossis, J. Colloids Interface Sci. 170, 269 (1995)

    Article  Google Scholar 

  22. C.M. Sorace, M.Y. Louge, M.D. Crozier, V.H.C. Law, Mech. Res. Commun. 36, 364 (2009)

    Article  MATH  Google Scholar 

  23. Y. Grasselli, G. Bossis, G. Goutallier, EPL 86, 60007 (2009)

    Article  ADS  Google Scholar 

  24. S. Das, S. Puri, Europhys. Lett. 61, 749 (2003)

    Article  ADS  Google Scholar 

  25. P. Evesque, Powders & Grains 12, 60 (2001)

    Google Scholar 

  26. R. Soto, Phys. Rev. E 69, 061305 (2004)

    Article  ADS  Google Scholar 

  27. N. Rivas, S. Luding, A.R. Thornton, New J. Phys. 15, 113043 (2013)

    Article  ADS  Google Scholar 

  28. E. Falcon, J.-C. Bacri, C. Laroche, Powders & Grains 1542, 815 (2013)

    Google Scholar 

  29. T.P.C. van Noije, M.H. Ernst, Granular Matter 1, 57 (1998)

    Article  Google Scholar 

  30. R. Cafiero, S. Luding, H.J. Herrmann, Europhys. Lett. 60, 854 (2002)

    Article  ADS  Google Scholar 

  31. S. McNamara, S. Luding, Phys. Rev. E 58, 813 (1998)

    Article  ADS  Google Scholar 

  32. C.R.K. Windows-Yule, D.J. Parker, Phys. Rev. E 87, 022211 (2013)

    Article  ADS  Google Scholar 

  33. D. van der Meer, P. Reimann, Europhys. Lett. 74, 384 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Grasselli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grasselli, Y., Bossis, G. & Morini, R. Translational and rotational temperatures of a 2D vibrated granular gas in microgravity. Eur. Phys. J. E 38, 8 (2015). https://doi.org/10.1140/epje/i2015-15008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15008-5

Keywords

Navigation