Skip to main content

Advertisement

Log in

Optically driven oscillations of ellipsoidal particles. Part I: Experimental observations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have shapes varying between near disk-like (aspect ratio k = 0.2 to very elongated needle-like (k = 8 . Rather than the very tightly focused beam geometry of optical tweezers, we use a moderately focused laser beam to manipulate particles individually by optical levitation. The geometry allows us varying the longitudinal position of the particle, and to capture images perpendicular to the beam axis. Experiments show that moderate-k particles are radially trapped with their long axis lying parallel to the beam. Conversely, elongated (k > 3 or flattened (k < 0.3 ellipsoids never come to rest, and permanently “dance” around the beam, through coupled translation-rotation motions. The oscillations are shown to occur in general, be the particle in bulk water or close to a solid boundary, and may be periodic or irregular. We provide evidence for two bifurcations between static and oscillating states, at k ≈ 0.33 and k ≈ 3 for oblate and prolate ellipsoids, respectively. Based on a recently developed 2-dimensional ray-optics simulation (Mihiretie et al., EPL 100, 48005 (2012)), we propose a simple model that allows understanding the physical origin of the oscillations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)

    Article  ADS  Google Scholar 

  2. A. Ashkin, Optical trapping and manipulation of neutral particles using lasers (World Scientific, London, 2006)

  3. G. Roosen, C. Imbert, Phys. Lett. A 59, 6 (1976)

    Article  ADS  Google Scholar 

  4. A. Ashkin et al., Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  5. K.C. Neuman, S.M. Block, Rev. Sci. Instrum. 75, 2787 (2004)

    Article  ADS  Google Scholar 

  6. A. Jonáš, P. Zemánek, Electrophoresis 29, 4813 (2008)

    Article  Google Scholar 

  7. G. Roosen, PhD thesis, University Paris XI (1978)

  8. T.N. Buican et al., Proc. SPIE 1063, 190 (1989)

    Article  ADS  Google Scholar 

  9. D.J. Vossen et al., Rev. Sci. Instrum. 75, 2960 (2004)

    Article  ADS  Google Scholar 

  10. P.J. Rodrigo, V.R. Daria, J. Glückstad, J. Opt. Lett. 29, 2270 (2004)

    Article  ADS  Google Scholar 

  11. P.J. Rodrigo et al., Opt. Express 13, 6899 (2005)

    Article  ADS  Google Scholar 

  12. P. Kraikivski, B. Pouligny, R. Dimova, Rev. Sci. Instrum. 77, 113703 (2006)

    Article  ADS  Google Scholar 

  13. K.T. Gahagan, G.A. Swartzlander Jr., Opt. Lett. 21, 827 (1996)

    Article  ADS  Google Scholar 

  14. K.T. Gahagan, G.A. Swartzlander Jr., J. Opt. Soc. Am. B 15, 524 (1998)

    Article  ADS  Google Scholar 

  15. J. Arlt, M.J. Padgett, Opt. Lett. 25, 191 (2000)

    Article  ADS  Google Scholar 

  16. V.G. Shvedov, Opt. Express 19, 17350 (2011)

    Article  ADS  Google Scholar 

  17. C. Alpmann et al., Appl. Phys. Lett. 100, 111101 (2012)

    Article  ADS  Google Scholar 

  18. P.H. Jones, O.M. Maragò, E.P.J. Stride, J. Opt. A: Pure Appl. Opt. 9, S278 (2007)

    Article  ADS  Google Scholar 

  19. S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 27, 1255 (2010)

    Article  ADS  Google Scholar 

  20. J.N. Wilking, T.G. Mason, EPL 81, 58005 (2008)

    Article  ADS  Google Scholar 

  21. A. Neves et al., Opt. Express 18, 822 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. P.J. Pauzauskie et al., Nat. Mater. 5, 97 (2006)

    Article  ADS  Google Scholar 

  23. A. Van der Horst et al., Opt. Express 15, 11629 (2007)

    Article  ADS  Google Scholar 

  24. J. Plewa, Opt. Express 12, 1978 (2004)

    Article  ADS  Google Scholar 

  25. O.M. Maragò et al., Nat. Nanotechnol. 8, 807 (2013)

    Article  ADS  Google Scholar 

  26. M.E.J. Friese et al., Appl. Phys. Lett. 78, 547 (2001)

    Article  ADS  Google Scholar 

  27. P.B. Bareil, Y. Sheng, Opt. Express 18, 26388 (2010)

    Article  ADS  Google Scholar 

  28. S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 28, 850 (2011)

    Article  ADS  Google Scholar 

  29. R.C. Gauthier, J. Opt. Soc. Am. B 14, 3323 (1997)

    Article  ADS  Google Scholar 

  30. R.C. Gauthier, M. Ashman, C.P. Grover, Appl. Opt. 38, 4861 (1999)

    Article  ADS  Google Scholar 

  31. S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 24, 430 (2007)

    Article  ADS  Google Scholar 

  32. S.H. Simpson, S. Hanna, Phys. Rev. A 84, 053808 (2011)

    Article  ADS  Google Scholar 

  33. H. Sosa-Martínez, J.C. Gutiérrez-Vega, J. Opt. Soc. Am. B 26, 2109 (2009)

    Article  ADS  Google Scholar 

  34. F. Borghese et al., Phys. Rev. Lett. 100, 163903 (2008)

    Article  ADS  Google Scholar 

  35. Y. Cao et al., Opt. Express 20, 12987 (2012)

    Article  ADS  Google Scholar 

  36. M. Rodriguez-Otazo et al., Appl. Opt. 48, 2720 (2009)

    Article  ADS  Google Scholar 

  37. T. Imasaka et al., Anal. Chem. 67, 1763 (1995)

    Article  Google Scholar 

  38. C.B. Chang et al., Opt. Express 20, 24068 (2012)

    Article  ADS  Google Scholar 

  39. Z. Cheng, P.M. Chaikin, T.G. Mason, Phys. Rev. Lett. 89, 108303 (2002)

    Article  ADS  Google Scholar 

  40. Z. Cheng, T.G. Mason, P.M. Chaikin, Phys. Rev. E 68, 051404 (2003)

    Article  ADS  Google Scholar 

  41. S.C. Grover, R.C. Gauthier, A.G. Skirtach, Opt. Express 7, 533 (2000)

    Article  ADS  Google Scholar 

  42. A. Ashkin, J. Biophys. 61, 569 (1992)

    Article  Google Scholar 

  43. S.H. Simpson, S. Hanna, Phys. Rev. E 82, 031141 (2010)

    Article  ADS  Google Scholar 

  44. B.M. Mihiretie, P. Snabre, J.-C. Loudet, B. Pouligny, EPL 100, 48005 (2012)

    Article  ADS  Google Scholar 

  45. C.C. Ho et al., Colloid Polym. Sci. 271, 469 (1993)

    Article  Google Scholar 

  46. J.A. Champion, Y.K. Katare, S. Mitragotri, Proc. Natl. Acad. Sci. U.S.A. 104, 11901 (2007)

    Article  ADS  Google Scholar 

  47. S.M. Block, Optical Tweezers: A New Tool for Biophysics, in Noninvasive Techniques in Cell Biology, edited by B.H. Satir (Wiley-Liss, New York, 1990) pp. 375-402

  48. R. Hegger, H. Kantz, T. Schreiber, Chaos 9, 413 (1999)

    Article  ADS  MATH  Google Scholar 

  49. J.-C. Loudet et al., Phys. Rev. Lett. 94, 018301 (2005)

    Article  ADS  Google Scholar 

  50. D.M. Kaz et al., Nat. Mater. 11, 138 (2012)

    Article  ADS  Google Scholar 

  51. T.F. Quatieri, Discrete-Time Speech Signal Processing: Principle and Practice (Prentice Hall PTR, 2002)

  52. J.-C. Loudet, B.M. Mihiretie, B. Pouligny, Eur. Phys. J. E 37, 125 (2014)

    Article  Google Scholar 

  53. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, Dordrecht, 1991)

  54. Y. Han et al., Phys. Rev. E 80, 011403 (2009)

    Article  ADS  Google Scholar 

  55. R. Rosen, Dynamical System Theory in Biology, Vol. 1 (Wiley-Interscience, 1970)

  56. J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos (John Wiley & Sons, 1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -C. Loudet.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihiretie, B.M., Snabre, P., Loudet, J.C. et al. Optically driven oscillations of ellipsoidal particles. Part I: Experimental observations. Eur. Phys. J. E 37, 124 (2014). https://doi.org/10.1140/epje/i2014-14124-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14124-0

Keywords

Navigation