Skip to main content
Log in

Molecular dynamics approach to locally resolve elastic constants in nanocomposites and thin films: Mechanical description of solid-soft matter interphases via Young's modulus, Poisson's ratio and shear modulus

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A molecular dynamics approach based on a small-deformation mechanical response has been extended from the evaluation of locally resolved Poisson's ratios, \( \nu_{j}\), in nanocomposites to the calculation of local Young's moduli, Ej, (with j labelling a subvolume of the studied sample). On the basis of the \( \nu_{j}\) and Ej, the local values of the shear modulus, Gj, can be derived as well. The capability of the developed method to derive locally resolved elastic constants of complex (nanocomposite) systems has been tested for an atomistic model of silica and atactic polystyrene. When measuring the interphase dimension of the composite in terms of local Ej, \( \nu_{j}\) and Gj elements, a surface influence exceeding three times the polymer bulk radius of gyration (R g \( \approx\) 1 nm in the studied 20mer composite) is predicted while for the majority of static quantities (e.g., polymer mass density, polymer orientation relative to the nanoparticle surface, radius of gyration, end-to-end distance) interphase dimensions only slightly larger than the polymer Rg are found. Calculated local values of mechanical descriptors can be adopted as input parameters in the micromechanical modelling of multicomponent nanocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.T. Thostenson, C.Y. Li, T.W. Chou, Compos. Sci. Techno. 65, 491 (2005)

    Article  Google Scholar 

  2. C. Chevigny, N. Jouault, F. Dalmas, F. Boué, J. Jestin, J. Polym. Sci. B: Polym. Phys. 49, 781 (2011)

    Article  ADS  Google Scholar 

  3. L. Yelash, P. Virnau, K. Binder, W. Paul, Phys. Rev. E 82, 50801 (2010)

    Article  ADS  Google Scholar 

  4. T.V.M. Ndoro, E. Voyiatzis, A. Ghanbari, D.N. Theodorou, M.C. Böhm, F. Müller-Plathe, Macromolecules 44, 2316 (2011)

    Article  ADS  Google Scholar 

  5. T.V.M. Ndoro, M.C. Böhm, F. Müller-Plathe, Macromolecules 45, 171 (2012)

    Article  ADS  Google Scholar 

  6. M. Rahimi, I. Iriarte-Carretero, A. Ghanbari, M.C. Böhm, F. Müller-Plathe, Nanotecnology 23, 305702 (2012)

    Article  Google Scholar 

  7. A.A. Gusev, J.J.M. Slot, Adv. Engin. Mater. 3, 427 (2001)

    Article  Google Scholar 

  8. T. Oie, Y. Murayama, T. Fukuda, C. Nagai, S. Omata, K. Kanda, H. Yaku, Y. Nakayama, J. Artific. Organs 12, 40 (2009)

    Article  Google Scholar 

  9. F. Mège, F. Volpi, M. Verdier, Microelectron. Eng. 87, 416 (2010)

    Article  Google Scholar 

  10. M.A. Monclus, T.J. Young, D. Di Maio, J. Mater. Sci. 12, 3190 (2010)

    Article  ADS  Google Scholar 

  11. F. Yang, S. Ghosh, L.J. Lee, Comput. Mech. 50, 169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. S.A. Baeurle, T. Usami, A.A. Gusev, Polymer 47, 8604 (2006)

    Article  Google Scholar 

  13. G.M. Odegard, T.C. Clancy, T.S. Gates, Polymer 46, 553 (2005)

    Article  Google Scholar 

  14. M. Parrinello, A. Rahman, J. Chem. Phys. 76, 2662 (1982)

    Article  ADS  Google Scholar 

  15. M. Parrinello, A. Rahmkan, J. Appl. Phys. 52, 7182 (1981)

    Article  ADS  Google Scholar 

  16. D.N. Theodorou, U.W. Suter, Macromolecules 18, 1467 (1985)

    Article  ADS  Google Scholar 

  17. D.N. Theodorou, U.W. Suter, Macromolecules 19, 139 (1986)

    Article  ADS  Google Scholar 

  18. E. Riccardi, M.C. Böhm, F. Müller-Plathe, Phys. Rev. E 86, 036704 (2012)

    Article  ADS  Google Scholar 

  19. G.J. Papakonstantopoulos, K. Yoshimoto, M. Doxastakis, P.F. Nealey, J.J. de Pablo, Phys. Rev. E 72, 031801 (2005)

    Article  ADS  Google Scholar 

  20. G.J. Papakonstantopoulos, M. Doxastakis, P.F. Nealey, J.-L. Barrat, J.J. de Pablo, Phys. Rev. E 75, 031803 (2007)

    Article  ADS  Google Scholar 

  21. N. Bakhvalov, G. Panasenko, Homogenisation: Averaging Processes in Periodic Media (Kluwer, Academic Publishers, 1989)

  22. G.M. Odegard, T.S. Gates, L.M. Nicholson, K.E. Wise, Comp. Sci. Technol. 62, 1869 (2002)

    Article  Google Scholar 

  23. S. Pfaller, M. Rahimi, G. Possart, P. Steinmann, F. Müller-Plathe, M.C. Böhm, Comput. Meth. Appl. Mech. Engin. 260, 109 (2013)

    Article  MATH  ADS  Google Scholar 

  24. J.Q. Stowe, P.K. Predecki, P.J. Laz, B.M. Burks, M. Kumosa, Acta Mater. 57, 3615 (2009)

    Article  Google Scholar 

  25. A.V. Lyulin, M.K. Balabaev, M.A. Mazo, M.A.J. Michels, Macromolecules 37, 8785 (2004)

    Article  ADS  Google Scholar 

  26. J.T. Seitz, J. Appl. Polym. Sci. 49, 1331 (1993)

    Article  Google Scholar 

  27. T. Raaska, J.S. Niemela, F. Sundholm, Macromolecules 27, 5751 (1994)

    Article  ADS  Google Scholar 

  28. F. Müller-Plathe, Comput. Phys. Commun. 78, 77 (1993)

    Article  ADS  Google Scholar 

  29. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)

    Article  Google Scholar 

  30. P.E.M. Lopes, V. Murashov, M. Tazi, E. Demchuk, A.D. MacKerell, J. Phys. Chem. B 110, 2782 (2006)

    Article  Google Scholar 

  31. A. Ghanbari, T.V.M. Ndoro, F. Leroy, M. Rahimi, M.C. Böhm, F. Müller-Plathe, Macromolecules 45, 572 (2012)

    Article  ADS  Google Scholar 

  32. A. Ghanbarim, M.C. Böhm, F. Müller-Plathe, Macromolecules 44, 5520 (2011)

    Article  Google Scholar 

  33. D. Spoel, E. Lindahl, B. Hess, A. Buuren, E. Apol, P. Meulenhoff, D. Tieleman, A. Sijbers, K. Feenstra, R. Drunen, H. Berendsen, Gromacs User Manual version 4.5.4, 2010, www.gromacs.org

  34. P.H. Mott, J.R. Dorgan, C.M. Roland, J. Sound Vib. 312, 572 (2008)

    Article  ADS  Google Scholar 

  35. H. Höcker, G.J. Blake, P.J. Flory, Trans. Farasday Soc. 67, 2251 (1971)

    Article  Google Scholar 

  36. K. Farah, F. Leroy, F. Müller-Plathe, M.C. Böhm, J. Phys. Chem. C 115, 16451 (2011)

    Article  Google Scholar 

  37. M. Alaghemandi, M.R. Gharib-Zahedi, E. Spohr, M.C. Böhm, J. Phys. Chem. C 116, 14115 (2012)

    Article  Google Scholar 

  38. E. Voyiatzis, F. Müller-Plathe, M.C. Böhm, Macromolecules (in press)

  39. H. Eslami, F. Müller-Plathe, J. Phys. Chem. B 113, 5568 (2009)

    Article  Google Scholar 

  40. H. Eslami, F. Müller-Plathe, J. Phys. Chem. B 114, 387 (2010)

    Article  Google Scholar 

  41. H. Eslami, H.A. Karimi-Varzaneh, F. Müller-Plathe, Macromolecules 44, 3117 (2011)

    Article  ADS  Google Scholar 

  42. H. Eslami, F. Müller-Plathe, J. Phys. Chem. C 117, 5249 (2013)

    Article  Google Scholar 

  43. G. Bourkas, I. Prassianakis, V. Kytopoulos, E. Sideridis, C. Younis, Adv. Mater. Sci. Eng. 2010, 891824 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Riccardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccardi, E., Böhm, M. & Müller-Plathe, F. Molecular dynamics approach to locally resolve elastic constants in nanocomposites and thin films: Mechanical description of solid-soft matter interphases via Young's modulus, Poisson's ratio and shear modulus. Eur. Phys. J. E 37, 103 (2014). https://doi.org/10.1140/epje/i2014-14103-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14103-5

Keywords

Navigation