Skip to main content
Log in

Mixed lipid bilayers with locally varying spontaneous curvature and bending

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A model of lipid bilayers made of a mixture of two lipids with different average compositions on both leaflets, is developed. A Landau Hamiltonian describing the lipid-lipid interactions on each leaflet, with two lipidic fields ψ 1 and ψ 2, is coupled to a Helfrich one, accounting for the membrane elasticity, via both a local spontaneous curvature, which varies as C 0 + C 1(ψ 1ψ 2/2), and a bending modulus equal to κ 0 + κ 1(ψ 1 + ψ 2)/2. This model allows us to define curved patches as membrane domains where the asymmetry in composition, ψ 1ψ 2, is large, and thick and stiff patches where ψ 1 + ψ 2 is large. These thick patches are good candidates for being lipidic rafts, as observed in cell membranes, which are composed primarily of saturated lipids forming a liquid-ordered domain and are known to be thick and flat nano-domains. The lipid-lipid structure factors and correlation functions are computed for globally spherical membranes and planar ones and for a whole set of parameters including the surface tension and the coupling in the two leaflet compositions. Phase diagrams are established, within a Gaussian approximation, showing the occurrence of two types of Structure Disordered phases, with correlations between either curved or thick patches, and an Ordered phase, corresponding to the divergence of the structure factor at a finite wave vector. The varying bending modulus plays a central role for curved membranes, where the driving force κ 1 C 20 is balanced by the line tension, to form raft domains of size ranging from 10 to 100 nm. For planar membranes, raft domains emerge via the cross-correlation with curved domains. A global picture emerges from curvature-induced mechanisms, described in the literature for planar membranes, to coupled curvature- and bending-induced mechanisms in curved membranes forming a closed vesicle.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Simons, G. van Meer, Biochemistry 27, 6197 (1988).

    Article  Google Scholar 

  2. K. Simons, E. Ikonen, Nature 387, 569 (1997).

    Article  ADS  Google Scholar 

  3. L.J. Pike, J. Lipid Res. 47, 1597 (2006).

    Article  Google Scholar 

  4. K. Jacobson, O.G. Mouritsen, R.G.W. Anderson, Nature Cell Biol. 9, 7 (2007).

    Article  Google Scholar 

  5. O.G. Mouritsen, K. Jorgensen, Chem. Phys. Lipids 73, 3 (1994).

    Article  Google Scholar 

  6. S.L. Veatch, S.L. Keller, Biochim. Biophys. Acta 1746, 172 (2005).

    Article  Google Scholar 

  7. S.L. Veatch et al., ACS Chem. Biol. 3, 297 (2008).

    Google Scholar 

  8. G.W. Feigenson, J.T. Buboltz, Biophys. J. 80, 2775 (2001).

    Article  Google Scholar 

  9. T. Baumgart, S.T. Hess, W.W. Webb, Nature 425, 821 (2003).

    Article  ADS  Google Scholar 

  10. T.M. Konyakhina, S.L. Goh, J.J. Amazon, F.A. Heberle, J. Wu, G.W. Feigenson, Biophys. J. 101, L8 (2011).

    Article  Google Scholar 

  11. S.L. Goh, J.J. Amazon, G.W. Feigenson, Biophys. J. 104, 853 (2013).

    Article  ADS  Google Scholar 

  12. M.J. Stevens, J. Am. Chem. Soc. 127, 15330 (2005).

    Article  MathSciNet  Google Scholar 

  13. J.D. Perlmutter, J.N. Sachs, J. Am. Chem. Soc. 133, 6563 (2011).

    Article  Google Scholar 

  14. L. Bagatolli, P.B. Sunil Kumar, Soft Matter 5, 3234 (2009).

    Article  ADS  Google Scholar 

  15. S. Meinhardt, R.L.C. Vink, F. Schmid, Proc. Natl. Acad. Sci. U.S.A. 110, 4476 (2013).

    Article  ADS  Google Scholar 

  16. S. Leibler, J. Phys. (France) 41, 109 (1986).

    Google Scholar 

  17. S. Leibler, D. Andelman, J. Phys. (France) 48, 2013 (1987).

    Article  Google Scholar 

  18. F. MacKintosh, Phys. Rev. E 50, 2891 (1994).

    Article  ADS  Google Scholar 

  19. M. Schick, Phys. Rev. E 85, 031902 (2012).

    Article  ADS  Google Scholar 

  20. P.B. Sunil Kumar, G. Gompper, R. Lipowsky, Phys. Rev. E 60, 4610 (1999).

    Article  ADS  Google Scholar 

  21. R. Shlomovitz, M. Schick, Biophys. J. 105, 1406 (2013).

    Article  ADS  Google Scholar 

  22. R. Brewster, S.A. Safran, Biophys. J. 98, L21 (2010).

    Article  Google Scholar 

  23. Y. Hirose, S. Komura, D. Andelman, Phys. Rev. E 86, 021916 (2012).

    Article  ADS  Google Scholar 

  24. D.S. Dean, M. Manghi, Phys. Rev. E 74, 021916 (2006).

    Article  ADS  Google Scholar 

  25. J. Palmeri, M. Manghi, N. Destainville, Phys. Rev. Lett. 99, 088103 (2007).

    Article  ADS  Google Scholar 

  26. M. Goulian, R. Bruinsma, P. Pincus, Europhys. Lett. 22, 145 (1993).

    Article  ADS  Google Scholar 

  27. J.-B. Fournier, P.G. Dommersnes, Eur. Phys. J. B 12, 9 (1999).

    Article  ADS  Google Scholar 

  28. A.R. Evans, M.S. Turner, P. Sens, Phys. Rev. E 67, 041907 (2003).

    Article  ADS  Google Scholar 

  29. H. Lodish, Molecular Cell Biology, 5th edition (W.H. Freeman, New York, 2004).

  30. S.A. Safran, P. Pincus, D. Andelman, Science 248, 354 (1990).

    Article  ADS  Google Scholar 

  31. S.A. Safran, P.A. Pincus, D. Andelman, F.C. MacKintosh, Phys. Rev. A 43, 1071 (1991).

    Article  ADS  Google Scholar 

  32. F.C. MacKintosh, S.A. Safran, Phys. Rev. E 47, 1180 (1993).

    Article  ADS  Google Scholar 

  33. T. Taniguchi, K. Kawasaki, D. Andelman, T. Kawakatsu, J. Phys. II 4, 1333 (1994).

    Google Scholar 

  34. J. Fan, M. Sammalkorpi, M. Haataja, Phys. Rev. Lett. 104, 118101 (2010).

    Article  ADS  Google Scholar 

  35. W. Helfrich, Z. Naturforsch. 28c, 693 (1973).

    Google Scholar 

  36. U. Seifert, Z. Phys. B 97, 299 (1995).

    Article  ADS  Google Scholar 

  37. U. Seifert, Adv. Phys. 46, 13 (1997).

    Article  ADS  Google Scholar 

  38. C. Barbetta, A. Imparato, J.-B. Fournier, Eur. Phys. J. E 31, 333 (2010).

    Article  Google Scholar 

  39. S.T. Milner, S.A. Safran, Phys. Rev. A 36, 4371 (1987).

    Article  ADS  Google Scholar 

  40. W. Helfrich, J. Phys. (France) 47, 321 (1986).

    Article  Google Scholar 

  41. O.G. Mouritsen, Life - As a Matter of Fat (Springer, Heidelberg, 2005).

  42. J. Dai, M.P. Sheetz, Biophys J. 77, 3363 (1999).

    Article  Google Scholar 

  43. S.A. Safran, J. Chem. Phys. 78, 2073 (1983).

    Article  ADS  Google Scholar 

  44. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edition (Butterworth-Heinemann, Oxford, 1986).

  45. W. Rawicz, K.C. Olbrich, T. McIntosh, D. Needham, E. Evans, Biophys J. 79, 328 (2000).

    Article  Google Scholar 

  46. D. Vind-Kezunovic, C. Nielsen, U. Wojewodzka, R. Gniadecki, Biochim. Biophys. Acta 1778, 2480 (2008).

    Article  Google Scholar 

  47. J.J. Amazon, S.L. Goh, G.W. Feigenson, Phys. Rev. E 87, 022708 (2013).

    Article  ADS  Google Scholar 

  48. J. Amazon, G. Feigenson, Phys. Rev. E 89, 022702 (2014).

    Article  ADS  Google Scholar 

  49. J. Hu, T. Weikl, R. Lipowsky, Soft Matter 7, 6092 (2011).

    Article  ADS  Google Scholar 

  50. P.B. Sunil Kumar, M. Rao, Phys. Rev. Lett. 80, 2489 (1997).

    Article  Google Scholar 

  51. R.R. Netz, J. Phys. I 7, 833 (1997).

    Google Scholar 

  52. R. Lipowsky, Biophys. J. 64, 1133 (1993).

    Article  ADS  Google Scholar 

  53. F. Julicher, R. Lipowsky, Phys. Rev. Lett. 70, 2964 (1993).

    Article  ADS  Google Scholar 

  54. J.L. Harden, F.C. MacKintosh, P.D. Olmsted, Phys. Rev. E 72, 011903 (2005).

    Article  ADS  Google Scholar 

  55. M. Ladji, P.B. Kumar, Phys. Rev. Lett. 93, 198105 (2004).

    Article  ADS  Google Scholar 

  56. P.B. Sunil Kumar, G. Gompper, R. Lipowsky, Phys. Rev. Lett. 86, 3911 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoel Manghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueguen, G., Destainville, N. & Manghi, M. Mixed lipid bilayers with locally varying spontaneous curvature and bending. Eur. Phys. J. E 37, 76 (2014). https://doi.org/10.1140/epje/i2014-14076-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14076-3

Keywords

Navigation