Skip to main content
Log in

Field-dependent anisotropic microrheological and microstructural properties of dilute ferrofluids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have measured microrheological and microstructural properties of a superparamagnetic ferrofluid made of Mn0.75Zn0.25Fe2O4 (MZF) nanoparticles, using passive microrheology in a home-built inverted microscope. Thermal motion of a probe microsphere was measured for different values of an applied external magnetic field and analysed. The analysis shows anisotropy in magneto-viscous effect. Additional microrheological properties, such as storage modulus and loss modulus and their transition are also seen. We have also obtained microstructural properties such as elongational flow coefficient \( \lambda_{2}^{}\) , relaxation time constant \( \tau\) , coefficient of dissipative magnetization \( \alpha\) , etc., using the analysis given in Oliver Muller et al., J. Phys.: Condens. Matter 18, S2623, (2006) and Stefan Mahle et al., Phys. Rev. E 77, 016305 (2008) over our measured viscosity data. Our values for the above parameters are in agreement with earlier theoretical calculations and macro-rheological experimental measurements. These theoretical calculations consider an ideal situation of zero-shear limit, which is best approximated only in the passive microrheology technique described here and a first time measurement of all these parameters with passive microrheology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alenka Mertelj, Andraz Resetic, Saso Gyergyek, Darko Makovec, Martin Copic, Soft Matter 7, 125 (2011)

    Article  ADS  Google Scholar 

  2. John P. McTague, J. Chem. Phys. 51, 133 (1969)

    ADS  Google Scholar 

  3. C. Scherer, A.M. Figueiredo Neto, Braz. J. Phys. 35, 718 (2005)

    Article  ADS  Google Scholar 

  4. Tobias Neuberger, Bernhard Schopf, Heinrich Hofmann, Margarette Hofmann, Brigitte Von Rechenberg, J. Magn. & Magn. Mater. 293, 483 (2005)

    Article  Google Scholar 

  5. Marcela Gonzales, Kannan M. Krishnan, J. Magn. & Magn. Mater. 293, 265 (2005)

    Article  ADS  Google Scholar 

  6. Sunghyun Yoon, M. Gonzales-Weimuller, Y.C. Lee, Kannan M. Krishnan, J. Appl. Phys. 105, 07B507 (2009)

    Google Scholar 

  7. M. Shliomis, Phys. JEPT 34, 1291 (1972)

    ADS  Google Scholar 

  8. S. Mahle, P. Ilg, M. Liu, Phys. Rev. E 77, 016305 (2008) and references therein

    Article  ADS  Google Scholar 

  9. S. Odenbach, J. Phys.: Condens. Matter 23, 346002 (2011)

    Google Scholar 

  10. K.I. Morozov, J. Magn. & Magn. Mater. 122, 98 (1993)

    Article  ADS  Google Scholar 

  11. G. Thirupathi, R. Singh, Physica B 448, 346 (2014)

    Article  ADS  Google Scholar 

  12. Oliver Muller, Dorothea Hahn, Mario Liu, J. Phys.: Condens. Matter 18, S2623 (2006) and references therein

    Article  Google Scholar 

  13. S. Odenbach, H.W. Muller, Phys. Rev. Lett. 89, 037202 (2002)

    Article  ADS  Google Scholar 

  14. S. Odenbach, Colloidal Magnetic Fluids (Springer-Verlag, Berlin, 2009)

  15. G. Thirupathi, R. Singh, IEEE Trans. Mag. 48, 3630 (2012)

    Article  ADS  Google Scholar 

  16. G. Thirupathi, S. Saipriya, R. Singh, AIP Conf. Proc. 1447, 1129 (2012)

    Article  ADS  Google Scholar 

  17. S. Dhara, Y. Balaji, J. Ananthaiah, P. Sathyanarayana, V. Ashoka, A. Spadlo, R. Dabrowski, Phys. Rev. E 87, R030501 (2013)

    Article  ADS  Google Scholar 

  18. Jordi Faraudo, Jordi S. Andreu, Juan Camacho, Soft Matter 9, 6654 (2013)

    Article  ADS  Google Scholar 

  19. Denis Wirtz, Annu. Rev. Biophys. 38, 301 (2009)

    Article  Google Scholar 

  20. R. Toussaint, J. Akselvoll, G. Helgesen, E.G. Flekkøy, Prog. Colloid Polym. Sci. 128, 151 (2004)

    Google Scholar 

  21. R. Toussaint, J. Akselvoll, G. Helgesen, A.T. Skjeltorp, E.G. Flekkøy, Phys. Rev. E 69, 011407 (2004)

    Article  ADS  Google Scholar 

  22. A.T. Skjeltorp, J. Appl. Phys. 55, 2587 (1984)

    Article  ADS  Google Scholar 

  23. Randall M. Erb, Hui S. Son, Bappaditya Samanta, Vincent M. Rotello, Benjamin B. Yellen, Nature 457, 07766 (2009)

    Article  Google Scholar 

  24. Thomas G. Mason, Rheol. Acta 39, 371 (2000)

    Article  Google Scholar 

  25. Juan Pablo Segovia-Gutierrez, Juan de Vicente, Roque Hidalgo-Alvarez, Antonio M. Puertas, Soft Matter 9, 6970 (2013)

    Article  ADS  Google Scholar 

  26. S. Odenbach, H.W. Muller, J. Magn. & Magn. Mater 289, 242 (2005)

    Article  ADS  Google Scholar 

  27. A. Wiedennmann, U. Keiderling, K. Habicht, M. Russina, R. Gähler, Phys. Rev. Lett. 97, 057202 (2006)

    Article  ADS  Google Scholar 

  28. M. Klokkenburg, B.H. Erné, J.D. Meeldijk, A. Wiedennmann, A.V. Petukhov, R.P. Dullens, A.P. Phillipse, Phys. Rev. Lett. 97, 185702 (2006)

    Article  ADS  Google Scholar 

  29. A. Wiedennnmann, A. Hoell, M. Kammel, P. Boesecke, Phys. Rev. E 68, 031203 (2003)

    Article  ADS  Google Scholar 

  30. S. Odenbach, J. Phys.: Condens. Matter 16, R1135 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Vudaygiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yendeti, B., Thirupathi, G., Vudaygiri, A. et al. Field-dependent anisotropic microrheological and microstructural properties of dilute ferrofluids. Eur. Phys. J. E 37, 70 (2014). https://doi.org/10.1140/epje/i2014-14070-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14070-9

Keywords

Navigation