Skip to main content
Log in

Simulations on a swollen gyroid nanostructure in thin films relevant to systems of ionic block copolymers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Self-assembly of symmetric A/S-B copolymer melt to gyroid nanostructure, partitioning space into interpenetrating nano-labyrinths (channels), in thin films, is investigated using a minimal lattice model with short-range interactions. This model is relevant to poly(styrenesulfonate)-b -polymethylbutylene melt consisting of three types of segments, A, B and S, corresponding to styrene, methylbutylene and styrenesulfonate, respectively. A single sequence of A, B, and S is used in simulations and the fraction of S segments is fixed at p = 0.647 which corresponds to experimental data. The film thickness, L z , is restricted to nine values (L z = 17 , 22, 26, 30, 34, 42, 51, 60, and 68 in units of the underlying lattice constant). The gyroid nanostructure is found to be stable if the film thickness is equal to or greater than the bulk period of the nanophase. The observed gyroid is referred to as swollen since the volume fraction of two continuous networks made of the B segments is anomalous with respect to that of conventional diblock copolymers. In contrast to bulk state, we do not directly observe the order-disorder transition to the gyroid nanophase for thin films. In this case, however, simulations indicate a direct order-disorder transition to a lamellar phase and the order-disorder transition temperature is higher than that in the bulk state, varying strongly with the film thickness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994).

    Article  ADS  Google Scholar 

  2. M.W. Matsen, F.S. Bates, Macromolecules 29, 7641 (1996).

    Article  ADS  Google Scholar 

  3. M. Banaszak, S. Woloszczuk, T. Pakula, S. Jurga, Phys. Rev. E 66, 031804 (2002).

    Article  ADS  Google Scholar 

  4. I.W. Hamley, Block Copolymers in Solution: Fundamentals and Applications (Wiley, 2005).

  5. V. Abetz, P.F.W. Simon, Adv. Polym. Sci. 189, 125 (2005).

    Article  Google Scholar 

  6. T. Smart, H. Lomas, M. Massignani, M.V. Flores-Merino, L.R. Perez, G. Battaglia, Nano Today 3, 38 (2008).

    Article  Google Scholar 

  7. E. Lennon, K. Katsov, G. Fredrickson, Phys. Rev. Lett. 101, 1 (2008).

    Article  Google Scholar 

  8. Y.C. Tseng, S.B. Darling, Polymers 2, 470 (2010).

    Article  Google Scholar 

  9. K.D. Kreuer, J. Membrane Sci. 185, 29 (2001).

    Article  Google Scholar 

  10. K.D. Kreuer, in Handbook of Fuel Cell - Fundamentals, Technology and Applications, edited by W. Vielstich, A. Lamm, H.A. Gasteiger, Vol. 3 (John Wiley & Sons Ltd, 2003).

  11. A.Z. Weber, J. Newman, J. Electrochem. Soc. 150, A1008 (2003).

    Article  Google Scholar 

  12. M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Chem. Rev. 104, 4587 (2004).

    Article  Google Scholar 

  13. K.A. Mauritz, R.B. Moore, Chem. Rev. 104, 4535 (2004).

    Article  Google Scholar 

  14. M.H. Kim, C.J. Glinka, S.A. Grot, W.G. Grot, Macromolecules 39, 4775 (2006).

    Article  ADS  Google Scholar 

  15. N.P. Balsara, M. Singh, Abstr. Pap. Am. Chem. Soc. 233, 4578 (2007).

    Google Scholar 

  16. M. Goswami, S.K. Kumar, A. Bhattacharya, J.F. Douglas, Macromolecules 40, 4113 (2007).

    Article  ADS  Google Scholar 

  17. M.J. Park, N.P. Balsara, in Proton exchange membrane fuel cells 8, pts 1 and 2, edited by T. Fuller, K. Shinohara, V. Ramani, P. Shirvanian, H. Uchida, S. Cleghorn, M. Inaba, S. Mitsushima, P. Strasser, H. Nakagawa, Vol. 16 (Electrochemical Society Inc., 2008) p. 1357.

  18. M. Goswami, B.G. Sumpter, T. Huang, J.M. Messman, S.P. Gido, I. Isaacs-Sodeye, J.W. Mays, Soft Matter 24, 6146 (2010).

    Article  ADS  Google Scholar 

  19. M.J. Park, N.P. Balsara, Macromolecules 43, 292 (2010).

    Article  ADS  Google Scholar 

  20. N.P. Balsara, K.M. Beers, Eur. Polym. J. 47, 647 (2011).

    Article  Google Scholar 

  21. M. Goswami, R. Kumar, B.G. Sumpter, J. Mays, J. Phys. Chem. B 115, 3330 (2011).

    Article  Google Scholar 

  22. X. Wang, M. Goswami, R. Kumar, B.G. Sumpter, J. Mays, Soft Matter 8, 3036 (2012).

    Article  ADS  Google Scholar 

  23. M. Singh, O. Odusanya, G.M. Wilmes, H.B. Eitouni, E.D. Gomez, A.J. Patel, V.L. Chen, M.J. Park, P. Fragouli, H. Iatrou et al., Macromolecules 40, 4578 (2007).

    Article  ADS  Google Scholar 

  24. M.J. Park, N.P. Balsara, Macromolecules 41, 3678 (2008).

    Article  ADS  Google Scholar 

  25. X. Wang, S. Yakovlev, K.M. Beers, M.J. Park, S.a. Mullin, K.H. Downing, N.P. Balsara, Macromolecules 43, 5306 (2010).

    Article  ADS  Google Scholar 

  26. A.K. Jha, L. Chen, R.D. Offeman, N.P. Balsara, J. Membrane Sci. 373, 112 (2011).

    Article  Google Scholar 

  27. D. Hajduk, P.E. Harper, S.M. Gruner, C.C. Honeker, G. Kim, E.L. Thomas, L.J. Fetters, Macromolecules 27, 4063 (1994).

    Article  ADS  Google Scholar 

  28. M.F. Schulz, F.S. Bates, K. Almdal, K. Mortensen, Phys. Rev. Lett. 73, 86 (1994).

    Article  ADS  Google Scholar 

  29. M.R.J. Scherer, Double-Gyroid-Structured Functional Materials: Synthesis and Applications (Springer Verlag, 2013).

  30. A. Mavroudis, A. Avgeropoulos, N. Hadjichristidis, E.L. Thomas, D.J. Lohse, Chem. Mater. 15, 1976 (2003).

    Article  Google Scholar 

  31. M.W. Matsen, Curr. Opin. Colloid Interface Sci. 3, 40 (1998).

    Article  Google Scholar 

  32. M.J. Fasolka, A.M. Mayes, Annu. Rev. Mater. Res. 31, 323 (2001).

    Article  ADS  Google Scholar 

  33. M. Matsen, J. Chem. Phys. 106, 7781 (1996).

    Article  ADS  Google Scholar 

  34. H. Huinink, J. Brokken-Zijp, M. Van Dijk, G. Sevink, J. Chem. Phys. 112, 2452 (2000).

    Article  ADS  Google Scholar 

  35. Q. Wang, P. Nealey, J. De Pablo, Macromolecules 34, 3458 (2001).

    Article  ADS  Google Scholar 

  36. C. Shin, H. Ahn, E. Kim, D.Y. Ryu, J. Huh, K.W. Kim, T.P. Russell, Macromolecules 41, 9140 (2008).

    Article  ADS  Google Scholar 

  37. C. Shin, D. Ryu, J. Huh, J. Kim, K.W. Kim, Macromolecules 42, 2157 (2009).

    Article  ADS  Google Scholar 

  38. W. van Zoelen, G. ten Brinke, Soft Matter 5, 1568 (2009).

    Article  ADS  Google Scholar 

  39. D. Meng, Q. Wang, Soft Matter 6, 5891 (2010).

    Article  ADS  Google Scholar 

  40. J. Albert, T. Epps III, Mater. Today 13, 24 (2010).

    Article  Google Scholar 

  41. W. Li, M. Liu, F. Qiu, A.C. Shi, J. Phys. Chem. B 117, 5280 (2013).

    Article  Google Scholar 

  42. M.S. She, T.Y. Lo, R.M. Ho, Macromolecules 47, 175 (2014).

    Article  Google Scholar 

  43. J. Jung, H.W. Park, S. Lee, H. Lee, T. Chang, K. Matsunaga, H. Jinnai, ACS NANO 4, 3109 (2010).

    Article  Google Scholar 

  44. R.J. Spontak, Colloid Polym. Sci. 267, 808 (1989).

    Article  Google Scholar 

  45. M.J. Fasolka, P. Banerjee, A.M. Mayes, G. Pickett, A.C. Balazs, Macromolecules 33, 5702 (2000).

    Article  ADS  Google Scholar 

  46. D.N. Leonard, P.E. Russell, S.D. Smith, R.J. Spontak, Macromol. Rapid Commun. 23, 205 (2002).

    Article  Google Scholar 

  47. I.W. Hamley, Progr. Polym. Sci. 34, 1161 (2009).

    Article  Google Scholar 

  48. S. Handayani, E.L. Dewi, J. Sains Mater. Indo. (2010).

  49. P. Knychała, M. Banaszak, M.J. Park, N.P. Balsara, Macromolecules 42, 8925 (2009).

    Article  ADS  Google Scholar 

  50. P. Knychała, M. Dziecielski, M. Banaszak, N.P. Balsara, Macromolecules 46, 5724 (2013).

    Article  ADS  Google Scholar 

  51. P. Knychała, M. Banaszak, N.P. Balsara, Macromolecules 47, 2529 (2014).

    Article  ADS  Google Scholar 

  52. P. Flory, J. Chem. Phys. 9, 660 (1941).

    Article  ADS  Google Scholar 

  53. M. Banaszak, J.H. Clarke, Phys. Rev. E 60, 5753 (1999).

    Article  ADS  Google Scholar 

  54. P. Knychała, M. Banaszak, P. Polanowski, Soft Matter 8, 6638 (2012).

    Article  ADS  Google Scholar 

  55. A. Gauger, A. Weyersberg, T. Pakula, Makromolek. Chem. Theor. Simul. 2, 531 (1993).

    Article  Google Scholar 

  56. A. Weyersberg, T.A. Vilgis, Phys. Rev. E 48, 377 (1993).

    Article  ADS  Google Scholar 

  57. T. Pakula, K. Karatasos, S.H. Anastasiadis, G. Fytas, Macromolecules 30, 8463 (1997).

    Article  ADS  Google Scholar 

  58. T. Pakula, in Simulation Methods for Polymers, edited by M.J. Kotelyanskii, D.N. Thedorou (Marcel-Dekker, 2004), chapt. 5.

  59. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  60. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 57, 2607 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  61. D.J. Earl, M.W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005).

    Article  Google Scholar 

  62. A. Arceo, P.F. Green, J. Phys. Chem. B 109, 6958 (2005).

    Article  Google Scholar 

  63. Z. Nie, Z. Su, Z. Sun, T. Shi, L. An, Macromol. Theor. Simul. 14, 463 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Banaszak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knychała, P., Banaszak, M. Simulations on a swollen gyroid nanostructure in thin films relevant to systems of ionic block copolymers. Eur. Phys. J. E 37, 67 (2014). https://doi.org/10.1140/epje/i2014-14067-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14067-4

Keywords

Navigation