Skip to main content
Log in

Symmetry of interactions rules in incompletely connected random replicator ecosystems

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The evolution of an incompletely connected system of species with speciation and extinction is investigated in terms of random replicators. It is found that evolving random replicator systems with speciation do become large and complex, depending on speciation parameters. Antisymmetric interactions result in large systems, whereas systems with symmetric interactions remain small. A co-dominating feature is within-species interaction pressure: large within-species interaction increases species diversity. Average fitness evolves in all systems, however symmetry and connectivity evolve in small systems only. Newcomers get extinct almost immediately in symmetric systems. The distribution in species lifetimes is determined for antisymmetric systems. The replicator systems investigated do not show any sign of self-organized criticality. The generalized Lotka-Volterra system is shown to be a tedious way of implementing the replicator system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.M. Raup, J.J. Sepkoski Jr., Science 215, 1501 (1982).

    Article  ADS  Google Scholar 

  2. D.M. Raup, J.J. Sepkoski Jr., Proc. Natl. Acad. Sci. U.S.A. 81, 801 (1984).

    Article  ADS  Google Scholar 

  3. J.J. Sepkoski Jr., Paleobiology 19, 43 (1993).

    Google Scholar 

  4. J. Alroy, Proc. Natl. Acad. Sci. U.S.A. 105, 11536 (2008).

    Article  ADS  Google Scholar 

  5. P. Bak, How Nature Works. The Science of Self-Organized Criticality (Oxford University Press, 1997).

  6. N. Eldredge, S.J. Gould, Punctuated equilibria: an alternative to phyletic gradualism, in Models in Paleobiology, edited by Thomas J.M. Schopf (Freeman, Cooper and Co., San Francisco, 1972) pp. 82-115.

  7. N. Eldredge, J.N. Thompson, P.M Brakefield, S. Gavrilets, D. Jablonski, J.B.C. Jackson, R.E. Lenski, B.S. Lieberman, M.A. McPeek, W. Miller III., Paleobiology 31, 133 (2005).

    Article  Google Scholar 

  8. P. Bak, K. Chen, M. Creutz, Nature 342, 780 (1989).

    Article  ADS  Google Scholar 

  9. S.A. Kauffman, S. Johnsen, J. Theor. Biol. 149, 467 (1991).

    Article  Google Scholar 

  10. P. Bak, H. Flyvbjerg, B. Lautrup, Phys. Rev. A 46, 6724 (1992).

    Article  ADS  Google Scholar 

  11. P. Bak, K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).

    Article  ADS  Google Scholar 

  12. H. Flyvbjerg, K. Sneppen, P. Bak, Phys. Rev. Lett. 71, 4087 (1993).

    Article  ADS  Google Scholar 

  13. S. Jain, S. Krishna, Phys. Rev. Lett. 81, 5684 (1998).

    Article  ADS  Google Scholar 

  14. S. Jain, S. Krishna, Comput. Phys. Commun. 121-122, 116 (1999).

    Article  ADS  Google Scholar 

  15. S. Jain, S. Krishna, Proc. Natl. Acad. Sci. U.S.A. 98, 543 (2002).

    Article  ADS  Google Scholar 

  16. S. Jain, S. Krishna, Proc. Natl. Acad. Sci. U.S.A. 99, 2055 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Jain, S. Krishna, Phys. Rev. E 65, 026103 (2002).

    Article  ADS  Google Scholar 

  18. S. Jain, S. Krishna, Graph theory and the evolution of autocatalytic networks, in Handbook of Graphs and Networks: From the Genome to the Internet, edited by S. Bornholdt, H.G. Schuster (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2005) pp. 355-394.

  19. A. Samal, H. Meyer-Ortmanns, Physica A 388, 1535 (2009).

    Article  ADS  Google Scholar 

  20. G Caldarelli, P.G. Higgs, A.J. McKane, J. Theor. Biol. 193, 345 (1998).

    Article  Google Scholar 

  21. B. Drossel, P.G. Higgs, A.J. McKane, J. theor. Biol. 208, 91 (2001).

    Article  Google Scholar 

  22. D. Garlaschelli, A. Capocci, G. Caldarelli, Nat. Phys. 3, 813 (2007).

    Article  Google Scholar 

  23. R.V. Solé, S.C. Manrubia, Phys. Rev. E 54, R42 (1996).

    Article  ADS  Google Scholar 

  24. M.E.J. Newman, J. Theor. Biol. 189, 235 (1997).

    Article  Google Scholar 

  25. N. Vandewalle, M. Ausloos, J. Phys. 5, 1011 (1995).

    Google Scholar 

  26. N. Vandewalle, M. Ausloos, Physical models of biological evolution. Symposium: The Evolution of Complexity - Evolutionary and Cybernetic Foundations for Transdisciplinary Integration, as part of the conference: Einstein Meets Magritte: An Interdisciplinary Reflection on Science, Nature, Human Action and Society May 29 / June 3, 1995 at the Free University of Brussels, Belgium.

  27. N. Vandewalle, M. Ausloos, Europhys. Lett. 32, 613 (1995).

    Article  ADS  Google Scholar 

  28. H. Rieger, J. Phys. A: Math. Gen. 22, 3447 (1989).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. M. Opper, S. Diederich, Phys. Rev. Lett. 69, 1616 (1992).

    Article  ADS  Google Scholar 

  30. M. Opper, S. Diederich, Comput. Phys. Commun. 121-122, 141 (1999).

    Article  ADS  Google Scholar 

  31. F.C. Poderoso, J.F. Fontanari, Eur. Phys. J. B 48, 557 (2005).

    Article  ADS  Google Scholar 

  32. T. Galla, J. Phys. A: Math. Gen. 39, 3853 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. K. Tokita, A. Yasutomi, Theor. Popul. Biol. 63, 131 (2003).

    Article  MATH  Google Scholar 

  34. R. Happel, P.F. Stadler, J. Theor. Biol. 195, 329 (1998).

    Article  Google Scholar 

  35. O.F. Cook, Science 23, 506 (1906).

    Article  ADS  Google Scholar 

  36. O.F. Cook, Am. Naturalist 42, 727 (1908).

    Article  Google Scholar 

  37. P. Bak, C. Tang, K. Weisenfeld, Phys. Rev. Lett. 59, 381 (1987).

    Article  ADS  Google Scholar 

  38. P. Bak, C. Tang, K. Weisenfeld, Phys. Rev. A 38, 364 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. M. Paczuski, P. Bak, S. Maslov, Phys. Rev. Lett. 74, 4253 (1995).

    Article  ADS  Google Scholar 

  40. Z. Olami, H.J. Feder, K. Christensen, Phys. Rev. Lett. 68, 1244 (1992).

    Article  ADS  Google Scholar 

  41. P. Bak, M. Paczuski, Proc. Natl. Acad. Sci. U.S.A. 92, 6689 (1995).

    Article  ADS  Google Scholar 

  42. R.V. Solé, J. Bascompte, Proc. R. Soc. B 263, 161 (1996).

    Article  ADS  Google Scholar 

  43. K. Sneppen, P. Bak, H. Flyvbjerg, M.H. Jensen, Proc. Natl. Acad. Sci. U.S.A. 92, 5209 (1995).

    Article  ADS  Google Scholar 

  44. J. de Boer, A.D. Jackson, T. Wettig, Phys. Rev. E 51, 4253 (1995).

    Google Scholar 

  45. M. Peschel, W. Mende, The Prey-Predator Model (Springer Verlag, Vienna, 1986).

  46. J.W. Weibull, Evolutionary Game Theory (MIT Press, Cambridge, Massachusetts, 2002).

  47. Y. Murase, T. Shimada, N. Ito, New J. Phys. 12, 063021 (2010).

    Article  ADS  Google Scholar 

  48. T. Shimada, S. Yukawa, N. Ito, Int. J. Mod. Phys. C 14, 1267 (2003).

    Article  ADS  Google Scholar 

  49. S. Finnegan, J.L. Payne, S.C. Wang, Paleobiology 34, 318 (2008).

    Article  Google Scholar 

  50. R. Levins, in Some mathematical problems in biology, edited by M. Gerstenhaber (Vol. II in lectures on Mathematics in Life Sciences) (American Mathematical Society, Providence, 1970) pp. 77-107.

  51. M. Gilpin, I. Hanski (Editors) Metapopulation dynamics: emprirical and theoretical investigations (Linnean Society of London, Academic Press, 1991).

  52. I. Hanski, M.E. Gilpin (Editors) Metapopulation biology. Ecology, genetics, and evolution (Academic Press, 1997).

  53. I. Hanski, Metapopulation Ecology (Oxford, 1999).

  54. I. Hanski, O.E. Gaggiotti (Editors) Ecology, genetics and evolution of metapopulations (Elsevier, 2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petri P. Kärenlampi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kärenlampi, P.P. Symmetry of interactions rules in incompletely connected random replicator ecosystems. Eur. Phys. J. E 37, 56 (2014). https://doi.org/10.1140/epje/i2014-14056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14056-7

Keywords

Navigation