Skip to main content
Log in

Noise-induced regime shifts: A quantitative characterization

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Diverse complex dynamical systems are known to exhibit abrupt regime shifts at bifurcation points of the saddle-node type. The dynamics of most of these systems, however, have a stochastic component resulting in noise-driven regime shifts even if the system is away from the bifurcation points. In this paper, we propose a new quantitative measure, namely, the propensity transition point as an indicator of stochastic regime shifts. The concepts and the methodology are illustrated for the one-variable May model, a well-known model in ecology and the genetic toggle, a two-variable model of a simple genetic circuit. The general applicability and usefulness of the method for the analysis of regime shifts is further demonstrated in the case of the mycobacterial switch to persistence for which experimental data are available.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Strogatz, Nonlinear Dynamics and Chaos - with Applications to Physics, Biology, Chemistry and Engineering (Addison-Wesley, 1994).

  2. M. Scheffer et al., Nature 461, 53 (2009).

    Article  ADS  Google Scholar 

  3. M. Scheffer, Critical Transitions in Nature and Society (Princeton University Press, 2009).

  4. M. Scheffer, S.R. Carpenter, Trends Ecol. Evol. 18, 648 (2003).

    Article  Google Scholar 

  5. T.M. Lenton, Nature Climate Change 1, 201 (2011).

    Article  ADS  Google Scholar 

  6. J.G. Venegas et al., Nature 434, 777 (2005).

    Article  ADS  Google Scholar 

  7. P.E. McSharry, L.A. Smith, L. Tarassenko, Nature Med. 9, 241 (2003).

    Article  Google Scholar 

  8. E.M. Ozbudak, M. Thattai, H.N. Lim, B.I. Shraiman, A. Van Oudenaarden, Nature 427, 737 (2004).

    Article  ADS  Google Scholar 

  9. J.R. Pomerening, Curr. Opin. Biotechnol. 19, 381 (2008).

    Article  Google Scholar 

  10. J.E. Ferrell, W. Xiong, Chaos 11, 227 (2001).

    Article  ADS  MATH  Google Scholar 

  11. L. Chen, R. Liu, Z.-P. Liu, M. Li, K. Aihara, Sci. Rep. 2, 342 (2012).

    ADS  Google Scholar 

  12. R.M. May, Nature 269, 471 (1977).

    Article  ADS  Google Scholar 

  13. V. Guttal, C. Jayprakash, Ecol. Modell. 201, 420 (2007).

    Article  Google Scholar 

  14. E. van Nes, M. Scheffer, M. Van der Bers, H. Coops, Aquatic Botany 72, 275 (2002).

    Article  Google Scholar 

  15. V. Guttal, C. Jayaprakash, Ecol. Lett. 11, 450 (2008).

    Article  Google Scholar 

  16. V. Dakos, E.H. Van Nes, P. D’Odorico, M. Scheffer, Ecology 93, 264 (2012).

    Article  Google Scholar 

  17. M. Scheffer et al., Science 338, 344 (2012).

    Article  ADS  Google Scholar 

  18. V. Horsthemke, R. Lefevre, Noise Induced Transitions (Springer-Verlag, Berlin, 1984).

  19. T.B. Kepler, T.C. Elston, Biophys. J. 81, 3116 (2001).

    Article  ADS  Google Scholar 

  20. C. Song et al., PLoS Comput. Biol. 6, e1000699 (2010).

    Article  ADS  Google Scholar 

  21. A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, J. Kurths, Phys. Rev. E 81, 011106 (2010).

    Article  ADS  Google Scholar 

  22. R. Karmakar, I. Bose, Phys. Biol. 4, 29 (2007).

    Article  ADS  Google Scholar 

  23. M. Samoilov, S. Plyasunov, A.P. Arkin, Proc. Natl. Acad. Sci. U.S.A. 102, 2310 (2005).

    Article  ADS  Google Scholar 

  24. T.L. To, N. Maheshri, Science 327, 1142 (2010).

    Article  ADS  Google Scholar 

  25. T.S. Gardner, C.R. Cantor, J.J. Collins, Nature 403, 339 (2000).

    Article  ADS  Google Scholar 

  26. D.T. Gillespie, J. Chem. Phys. 81, 2340 (1977).

    Article  Google Scholar 

  27. K. Sureka, B. Ghosh, A. Dasgupta, J. Basu, M. Kundu, I. Bose, Plos One 3, e1771 (2008).

    Article  ADS  Google Scholar 

  28. S. Ghosh, K. Sureka, B. Ghosh, I. Bose, J. Basu, M. Kundu, BMC Syst. Biol. 5, 18 (2011).

    Article  Google Scholar 

  29. C.W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1983).

  30. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 1992).

  31. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984).

  32. W.D. Jin, C. Li, K.S. Zhi, Phys. Rev. E 50, 2496 (1994).

    Article  ADS  Google Scholar 

  33. M. Rao, Y. Chen, B.C. Vemuri, Fei Wang, Inf. Theory, IEEE Trans. 50, 1220 (2004).

    Article  Google Scholar 

  34. X.-D. Zheng, X.-Q. Yan, Y. Tau, PLoS One 6, e17104 (2011).

    Article  ADS  Google Scholar 

  35. D.T. Gillespie, Markov Processes: An Introduction for Physical Scientists (Academic Press, London, 1992).

  36. M. Scott, Tutorial: Genetic Circuits and Noise, 2006, available at M. Scott’s website.

  37. R. Erban, J. Chapman, P. Maini (2007) arXiv:0704.1908[q-bio.SC].

  38. D.T. Gillespie, A. Hellander, L.R. Petzold, J. Chem. Phys. 138, 170901 (2013).

    Article  Google Scholar 

  39. D.T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).

    Article  ADS  Google Scholar 

  40. D.T. Gillespie, J. Chem. Phys. 113, 297 (2000).

    Article  ADS  Google Scholar 

  41. W.K. Smits, O.P. Kuipers, J.-W. Veening, Nat. Rev. Microbiol. 4, 259 (2006).

    Article  Google Scholar 

  42. H. Maamar, A. Raj, D. Dubnau, Science 317, 526 (2007).

    Article  ADS  Google Scholar 

  43. A. Tiwari, G. Bálazsi, M.L. Gennaro, O.A. Igoshin, Phys. Biol. 7, 036005 (2010).

    Article  ADS  Google Scholar 

  44. K. Sureka, B. Ghosh, A. Dasgupta, J. Basu, M. Kundu, I. Bose, unpublished data.

  45. C. Wissel, Oecologia 65, 101 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Bose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Pal, A.K. & Bose, I. Noise-induced regime shifts: A quantitative characterization. Eur. Phys. J. E 36, 123 (2013). https://doi.org/10.1140/epje/i2013-13123-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13123-y

Keywords

Navigation