Skip to main content
Log in

X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Small-angle X-ray scattering provides global, shape-sensitive structural information about macromolecules in solution. Its extension to time dimension in the form of time-resolved SAXS investigations and combination with other time-resolved biophysical methods contributes immensely to the study of protein dynamics. TR-SAXS can also provide unique information about the global structures of transient intermediates during protein dynamics. An experimental set-up with low protein consumption is essential for an extensive use of TR-SAXS experiments on protein dynamics. In this direction, a newly developed 20-microchannel microfluidic continuous-flow mixer was combined with SAXS. With this set-up, we demonstrate ubiquitin unfolding dynamics after rapid mixing with the chaotropic agent Guanidinium-HCl within milliseconds using only ∼ 40 nanoliters of the protein sample per scattering image. It is suggested that, in the future, this new TR-SAXS platform will help to increase the use of time-resolved small-angle X-ray scattering, wide-angle X-ray scattering and neutron scattering experiments for studying protein dynamics in the early millisecond regime. The potential research field for this set-up includes protein folding, protein misfolding, aggregation in amyloidogenic diseases, function of intrinsically disordered proteins and various protein-ligand interactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Petri et al., Biomacromolecules 13, 1882 (2012)

    Article  Google Scholar 

  2. M. Petri et al., J. Phys. Chem. A 115, 2176 (2011)

    Article  Google Scholar 

  3. D.A. Jacques, J. Trewhella, Protein Sci. 19, 642 (2010)

    Article  Google Scholar 

  4. C.D. Putnam et al., Q. Rev. Biophys. 40, 191 (2007)

    Article  Google Scholar 

  5. A.S. Ramos, S. Techert, Biophys. J. 89, 1990 (2005)

    Article  Google Scholar 

  6. S. Doniach, Chem. Rev. 101, 1763 (2001)

    Article  Google Scholar 

  7. J. Perez et al., J. Mol. Biol. 308, 721 (2001)

    Article  Google Scholar 

  8. L. Chen et al., J. Mol. Biol. 276, 225 (1998)

    Article  Google Scholar 

  9. M.V. Petoukhov et al., J. Appl. Crystallogr. 45, 342 (2012)

    Article  Google Scholar 

  10. F. Gabel et al., J. Am. Chem. Soc. 131, 8769 (2009)

    Article  Google Scholar 

  11. K.M. Weigandt, D.C. Pozzo, L. Porcar, Soft Matter 5, 4321 (2009)

    Article  ADS  Google Scholar 

  12. K.N. Toft et al., Anal. Chem. 80, 3648 (2008)

    Article  Google Scholar 

  13. M. Kakuta et al., Lab on a chip 3, 82 (2003)

    Article  Google Scholar 

  14. B. Marmiroli et al., Lab on a chip 9, 2063 (2009)

    Article  Google Scholar 

  15. L. Zhu et al., Biochim. 86, 127 (2004)

    Article  Google Scholar 

  16. D.J. Segel et al., J. Mol. Biol. 288, 489 (1999)

    Article  Google Scholar 

  17. M. Rossle et al., Biopolymers 74, 316 (2004)

    Article  Google Scholar 

  18. A. Martel et al., Biomicrofluidics 2, 24104 (2008)

    Article  Google Scholar 

  19. A. Martel et al., J. Am. Chem. Soc. 130, 17070 (2008)

    Article  Google Scholar 

  20. L. Pollack et al., Proc. Natl. Acad. Sci. U.S.A. 96, 10115 (1999)

    Article  ADS  Google Scholar 

  21. S. Akiyama et al., Proc. Natl. Acad. Sci. U.S.A. 99, 1329 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. H.Y. Park et al., Anal. Chem. 78, 4465 (2006)

    Article  Google Scholar 

  23. S.E. Jackson, Organ. Biomol. Chem. 4, 1845 (2006)

    Article  Google Scholar 

  24. C. Fares et al., J. Biomol. NMR 45, 23 (2009)

    Article  Google Scholar 

  25. O.F. Lange et al., Science 320, 1471 (2008)

    Article  ADS  Google Scholar 

  26. N.A. Lakomek et al., J. Biomol. NMR 34, 101 (2006)

    Article  Google Scholar 

  27. L.L. Yang et al., Eur. Biophys. J. 41, 189 (2012)

    Article  ADS  Google Scholar 

  28. J.R. Huang et al., J. Am. Chem. Soc. 134, 4429 (2012)

    Article  Google Scholar 

  29. H.S. Chung et al., Proc. Natl. Acad. Sci. U.S.A. 102, 612 (2005)

    Article  ADS  Google Scholar 

  30. M. Schlierf, H. Li, J.M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 101, 7299 (2004)

    Article  ADS  Google Scholar 

  31. J. Jacob et al., J. Mol. Biol. 338, 369 (2004)

    Article  Google Scholar 

  32. M. Noronha et al., Biophys. J. 87, 2609 (2004)

    Article  ADS  Google Scholar 

  33. H. Herberhold, R. Winter, Biochemistry 41, 2396 (2002)

    Article  Google Scholar 

  34. A. Vallee-Belisle, S.W. Michnick, Nat. Struct. Mol. Biol. 19, 731 (2012)

    Article  Google Scholar 

  35. S.V. Kathuria et al., Biopolymers 95, 550 (2011)

    Article  Google Scholar 

  36. Y. Gambin et al., Lab on a chip 10, 598 (2010)

    Article  Google Scholar 

  37. S. Kuwamoto, S. Akiyama, T. Fujisawa, J. Synchr. Radiat. 11, 462 (2004)

    Article  Google Scholar 

  38. S.M. Seltzer, Rad. Res. 136, 147 (1993)

    Article  Google Scholar 

  39. J.P. Lafleur et al., J. Appl. Crystallogr. 44, 1090 (2011)

    Article  Google Scholar 

  40. F. Westermeier et al., J. Synchr. Radiat. 16, 687 (2009)

    Article  Google Scholar 

  41. H. Durchschlag, P. Zipper, Eur. Biophys. J. 32, 487 (2003)

    Article  Google Scholar 

  42. O. Glatter, O. Kratky, Small-Angle X-ray Scattering (Academic Press, London, 1982)

  43. A. Guinier, G. Fournet, Small-Angle Scattering of X-rays (Wiley, New York, 1955)

  44. W. Quevedo, M. Petri, S. Techert, Z. Kristallogr. 223, 322 (2008)

    Google Scholar 

  45. P. Bernadó et al., J. Am. Chem. Soc. 129, 5656 (2007)

    Article  Google Scholar 

  46. D. Svergun, J. Appl. Crystallogr. 25, 495 (1992)

    Article  Google Scholar 

  47. V. Receveur-Brechot, D. Durand, Cur. Protein Peptide Sci. 13, 55 (2012)

    Article  Google Scholar 

  48. I. Grillo, Cur. Opin. Colloid Interface Sci. 14, 402 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Burg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, R., Petri, M., Kirschbaum, S. et al. X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations. Eur. Phys. J. E 36, 109 (2013). https://doi.org/10.1140/epje/i2013-13109-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13109-9

Keywords

Navigation